以研制的小型长航时水面无人平台为研究对象,研究波浪作用下小型长航时水面无人平台的光伏发电功率预测问题。建立基于高频非稳定姿态响应分析模型、任意斜面辐照度计算模型和光电转换模型的小型长航时水面无人平台光伏发电功率仿真分析模型,利用水池造波试验检验实海况条件平台光伏阵列姿态响应分析模型,利用陆上摇摆试验装置检验任意斜面辐照度计算模型和光电转换模型;在此基础上,梳理平台典型海上作业工况,并对各工况条件下的平台光伏发电情况进行仿真分析。研究结果表明:实海况条件下,小型长航时水面无人平台光伏瞬时发电功率波动情况受海况、波向、时刻等因素影响较大,平均功率受影响较小;3级海况下功率变化幅值最大可达平均值的82.5%,4级海况下功率变化幅值最大可达平均值的111.8%。
Abstract
Taking the developed small, long-endurance unmanned surface vehicle as the research object, the photovoltaic power generation prediction problem of unmanned surface vehicles under wave action is studied. A simulation model of photovoltaic power generation of small-scale long-duration surface autonomous observation vehicles based on high-frequency unsteady attitude response analysis model, arbitrary slant irradiance calculation model and photoelectric conversion model is established, and the attitude response analysis model of photovoltaic panels of the observation vehicle under the real sea condition is examined by using the pool wave-making test, and the calculation model of arbitrary slant irradiance and photoelectric conversion model are examined by using the on-land rocking test device. On this basis, the typical operating conditions of the observation vehicle are sorted out, and the photovoltaic power generation of the observation vehicle under each operating condition is simulated and analyzed. The results show that: under real sea conditions, the instantaneous power fluctuation of unmanned ship photovoltaic power generation is greatly affected by the sea state, wave direction, moment and other factors, and the average power is less affected; the maximum amplitude of the power change can reach 82.5% of the average value under the three-level sea conditions, and the maximum amplitude of the power change can reach 111.8% of the average value under the four-level sea conditions.
关键词
光伏发电 /
水面无人平台 /
波浪作用 /
计算机仿真 /
功率预测 /
海洋观测
Key words
PV power /
unmanned surface vehicles /
wave effects /
computer simulation /
power prediction /
ocean observation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] YANG T T, GUO Y J, ZHOU Y, et al.Joint communication and control for small underactuated USV based on mobile computing technology[J]. IEEE access, 2019, 7: 160610-160622.
[2] OLSON R A.Communications architecture of the liquid robotics wave glider[J]. IFAC proceedings volumes, 2012, 45(5): 255-259.
[3] 陈洪滨, 李军, 马舒庆, 等. 基于太阳能无人艇的海洋气象观测系统及其初步试验[J]. 气象科技, 2021, 49(4): 509-516.
CHEN H B, LI J, MA S Q, et al.A marine meteorological observation technique based on solar-powered UMV[J]. Meteorological science and technology, 2021, 49(4): 509-516.
[4] 孙秀军, 王雷, 桑宏强. “黑珍珠” 波浪滑翔器南海台风观测应用[J]. 水下无人系统学报, 2019, 27(5): 562-569.
SUN X J, WANG L, SANG H Q.Application of wave glider “black pearl” to typhoon observation in South China Sea[J]. Journal of unmanned undersea systems, 2019, 27(5): 562-569.
[5] LIU Y X, LIN M S, JIANG X W, et al.A comparison of multiplatform wind products in the South China Sea during summer and autumn in 2019[J]. Journal of oceanology and limnology, 2021, 39(6): 2181-2194.
[6] CROSS J N, MORDY C W, TABISOLA H M, et al.Innovative technology development for Arctic exploration[C]//OCEANS 2015 - MTS/IEEE Washington. Washington DC, USA, 2015: 1-8.
[7] MEINIG C, LAWRENCE-SLAVAS N, JENKINS R, et al.The use of saildrones to examine spring conditions in the Bering Sea: vehicle specification and mission performance[C]//OCEANS 2015-MTS/IEEE Washington. Washington DC, USA, 2015: 1-6.
[8] LIU G.Structural design and motion response analysis of AutoNaut wave glider[J]. Procedia computer science, 2022, 208: 293-299.
[9] 李芬, 赵晋斌, 段善旭, 等. 3种斜面月平均总辐射模型评估及光伏阵列最佳倾角研究[J]. 太阳能学报, 2015, 36(2): 502-509.
LI F, ZHAO J B, DUAN S X, et al.Evaluation of three models of monthly average total radiation on inclined surfaces and investigation of optimum tilt angle for PV array[J]. Acta energiae solaris sinica, 2015, 36(2): 502-509.
[10] 孙韵琳, 杜晓荣, 王小杨, 等. 固定式并网光伏阵列的辐射量计算与倾角优化[J]. 太阳能学报, 2009, 30(12): 1597-1601.
SUN Y L, DU X R, WANG X Y, et al.Calculation of solar radiation and optimum tilted angle of fixed grid connected solar PV array[J]. Acta energiae solaris sinica, 2009, 30(12): 1597-1601.
[11] OBIWULU A U, ERUSIAFE N, OLOPADE M A, et al.Modeling and estimation of the optimal tilt angle, maximum incident solar radiation, and global radiation index of the photovoltaic system[J]. Heliyon, 2022, 8(6): e09598.
[12] 李张翰熠, 张新曙. 基于势流模型的双体船耐波性能研究[J]. 海洋工程, 2023, 41(1): 57-67.
LI Z, ZHANG X S.Research on seakeeping performance of catamaran based on potential flow model[J]. The ocean engineering, 2023, 41(1): 57-67.
[13] VIOREL B.Modeling solar radiation at the earth' s surface[M]. Berlin Heidelberg: Springer, 2008.
[14] 吴贞龙, 徐政, 胡晓燕, 等. 倾斜面太阳辐照度实用计算模型的研究[J]. 太阳能学报, 2016, 37(3): 787-793.
WU Z L, XU Z, HU X Y, et al.Study on practical calculating models of irradiance intensity on tilted surfaces[J]. Acta energiae solaris sinica, 2016, 37(3): 787-793.
[15] 李遥, 李照荣, 王小勇, 等. 基于斜面辐射组合计算模型的光伏阵列最佳倾角研究[J]. 太阳能学报, 2022, 43(5): 127-136.
LI Y, LI Z R, WANG X Y, et al.Research on optimum tilt angle for PV array based on combination models of calculating solar radiation on inclined surface[J]. Acta energiae solaris sinica, 2022, 43(5): 127-136.
[16] YE L, SUN H B, SONG X R, et al.Dynamic modeling of a hybrid wind/solar/hydro microgrid in EMTP/ATP[J]. Renewable energy, 2012, 39(1): 96-106.
[17] 廖志凌, 阮新波. 任意光强和温度下的硅太阳电池非线性工程简化数学模型[J]. 太阳能学报, 2009, 30(4): 430-435.
LIAO Z L, RUAN X B.Non-linear engineering simplification model of silicon solar cells in arbitrary solar radiation and temperature[J]. Acta energiae solaris sinica, 2009, 30(4): 430-435.
基金
自然资源部海洋观测技术重点实验室基金(2021klootB04); 重点研发计划(2018YFB1503003)