对柔性钙钛矿太阳电池(FPSCs)成膜工艺进行研究,针对在柔性基底上沉积薄膜不均匀、较多缺陷、内部应力等问题,分析其形成原因和影响因素。选择PET/ITO作为柔性基底,SnO2作为电子传输层,加入KCl进行调控,KCl的加入可增加电子传输层与柔性导电基底的亲和性,从而获得致密且缺陷较少的膜层。通过优选钙钛矿前驱体各组分配比,加入MACl作为添加剂调控结晶过程,并在钙钛矿表面设计PEAI钝化层钝化界面,获得高质量的钙钛矿结晶和致密表面,并使电池的柔韧性能得到提升。在适宜的环境下,制备认证效率达到23.14%的柔性钙钛矿太阳电池,其在弯折10000次后仍能保持80.48%的初始光电转换效率。
Abstract
This article studies the film-forming process of flexible perovskite solar cells (FPSCs), and analyzes the reasons and influencing factors for the uneven deposition of thin films, numerous defects, and internal stress on flexible substrates. PET/ITO is selected as the flexible substrate, SnO2 as the electron transport layer, and KCL is introduced for regulation. The introduction of KCl increases the affinity between the electron transport layer and the flexible conductive substrate, resulting in a dense and defect free film layer. By optimizing the distribution ratio of perovskite precursors, introducing MACl as an additive to regulate the crystallization process, and designing a PEAI passivation layer passivation interface on the surface of perovskite, high-quality perovskite crystals and dense surfaces are obtained, and the flexibility performance of the device is improved. In a suitable environment, a flexible perovskite cell with a certified efficiency of 23.14% was prepared, and the initial conversion efficiency of 80.48% can still be maintained after 10000 time bends.
关键词
钙钛矿太阳电池 /
柔性 /
成膜工艺 /
制备环境
Key words
perovskite solar cells /
flexibility /
film forming process /
preparation environment
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报, 2021, 42(10): 49-60.
ZHANG Y L, CHEN X L, ZHOU Z X, et al.Research progress of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2021, 42(10): 49-60.
[2] HASNAIN S M.Examining the advances, obstacles, and achievements of tin-based perovskite solar cells: a review[J]. Solar energy, 2023, 262: 111825.
[3] 蒋瑞轩, 柯秉灿, 朱泽伟, 等. 钙钛矿光伏的先进印刷技术研究进展[J]. 硅酸盐学报, 2023, 51(9): 2287-2305.
JIANG R X, KE B C, ZHU Z W, et al.Recent advances on printing technology for perovskite photovoltaics[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2287-2305.
[4] ZHANG F, FAN J Y, YANG Y J, et al.Tungsten doped indium oxide (IWO) transparent electrode used in air-annealed perovskite solar cells[J]. Journal of alloys and compounds, 2023, 946: 169394.
[5] LI M H, ZHOU J J, TAN L G, et al.Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency[J]. The innovation, 2022, 3(6): 100310.
[6] WU Y Y, XU G Y, XI J C, et al.In situ crosslinking-assisted perovskite grain growth for mechanically robust flexible perovskite solar cells with 23.4% efficiency[J]. Joule, 2023, 7(2): 398-415.
[7] ZHAO J J, DENG Y H, WEI H T, et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells[J]. Science advances, 2017, 3(11): eaao5616.
[8] SAIDAMINOV M I, KIM J, JAIN A, et al.Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air[J]. Nature energy, 2018, 3: 648-654.
[9] TANG G Q, YAN F.Recent progress of flexible perovskite solar cells[J]. Nano today, 2021, 39: 101155.
[10] DOU B J, MILLER E M, CHRISTIANS J A, et al.High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO[J]. The journal of physical chemistry letters, 2017, 8(19): 4960-4966.
[11] ZARDETTO V, BROWN T M, REALE A, et al.Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties[J]. Journal of polymer science part B: polymer physics, 2011, 49(9): 638-648.
[12] CHEN Z Y, CHENG Q R, CHEN H Y, et al.Perovskite grain-boundary manipulation using room-temperature dynamic self-healing “ligaments” for developing highly stable flexible perovskite solar cells with 23.8% efficiency[J]. Advanced materials, 2023, 35(18): 2300513.
[13] GAO Y J, HUANG K Q, LONG C Y, et al.Flexible perovskite solar cells: from materials and device architectures to applications[J]. ACS energy letters, 2022, 7(4): 1412-1445.
[14] 李铃薇. 反式结构钙钛矿太阳能电池的制备及其改性研究[D]. 西安: 西安理工大学, 2019.
LI L W.Preparation and modification of inverted structured perovskite solar cell devices[D]. Xi'an: Xi'an University of Technology, 2019.
[15] LI Z H, WANG Z H, JIA C M, et al.Annealing free tin oxide electron transport layers for flexible perovskite solar cells[J]. Nano energy, 2022, 94: 106919.
[16] JUNG H S, HAN G S, PARK N G, et al.Flexible perovskite solar cells[J]. Joule, 2019, 3(8): 1850-1880.
[17] CHEN C, JIANG Y, FENG Y C, et al.Understanding the effect of antisolvent on processing window and efficiency for large-area flexible perovskite solar cells[J]. Materials today physics, 2021, 21: 100565.
[18] BI C, CHEN B, WEI H T, et al.Efficient flexible solar cell based on composition-tailored hybrid perovskite[J]. Advanced materials, 2017, 29(30): 1605900.
[19] REN N Y, WANG P Y, JIANG J K, et al.Multifunctional additive CdAc2 for efficient perovskite-based solar cells[J]. Advanced materials, 2023, 35(32): 2211806.
[20] DOU J, CHEN Q.Interfacial engineering for improved stability of flexible perovskite solar cells[J]. Energy material advances, 2022, 2022: 0002.
[21] LIU C, HUANG K, HU B, et al.Concurrent top and buried surface optimization for flexible perovskite solar cells with high efficiency and stability[J]. Advanced functional materials, 2023, 33(22): 2212698.
[22] LUCARELLI G, DE R F, TAHERI B, et al.Phenethylammonium iodide passivation layers for flexible planar perovskite solar cells[J]. Energy technology, 2022, 10(11): 2200314.
基金
华电重工科技项目(HHI-KJ-2022-01)