含沙污水源热泵系统污水侧防除垢与换热特性实验研究

钱剑峰, 孔繁鹏, 曹佳玲, 徐莹, 张吉礼, 王海燕

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 83-90.

PDF(1048 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1048 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 83-90. DOI: 10.19912/j.0254-0096.tynxb.2023-2033

含沙污水源热泵系统污水侧防除垢与换热特性实验研究

  • 钱剑峰1, 孔繁鹏1, 曹佳玲1, 徐莹1, 张吉礼2, 王海燕3
作者信息 +

EXPERIMENTAL INVESTIGATION ON ANTI-SCALING AND HEAT TRANSFER CHARACTERISTICS OF SEWAGE SIDE IN SAND-BEARING SEWAGE SOURCE HEAT PUMP SYSTEM

  • Qian Jianfeng1, Kong Fanpeng1, Cao Jialing1, Xu Ying1, Zhang Jili2, Wang Haiyan3
Author information +
文章历史 +

摘要

针对污水源热泵系统污水侧换热器结垢问题,探究含沙污水中含沙量及泥沙中值粒径对结垢的影响。搭建含沙污水源热泵污水侧防除垢实验台,在污水流速0.57、0.81、1.15 m/s,污水含沙量50、100、500、700、1200 g/m3,泥沙中值粒径为0.05、0.15、0.28、0.45 mm,换热管内径20 mm等特性参数下开展实验研究,并结合超声波声空化作用,探讨两者的耦合效果。研究表明:含沙污水的结垢量存在波动,0.45 mm泥沙中值粒径波动更为明显;含沙量一定的情况下,随着泥沙中值粒径的不断提高,结垢量逐渐减小,最大差值为16.1 g,传热系数相差130.49 W/(m2·K);超声波有着良好的防、除垢效果,1.15 m/s流速下的防、除垢效果最好,除垢率高达84%;相比泥沙中值粒径,含沙量对声空化效果影响更为明显,含沙量的增大会抑制声空化作用,影响效果5~50 min最为剧烈,大含沙量相比小含沙量,除垢率下降4.9%。

Abstract

Aiming at the problem of scale formation of heat exchanger on sewage side of sewage source heat pump system, the influence of sediment content and the median particle size of sediment in natural sewage on scale formation was studied. Build the anti-scaling test platform of the sewage side of the sand-containing sewage source heat pump. The sewage flow rate is 0.57, 0.81, 1.15 m/s, and the sewage sediment content is 50, 100, 500, 700, 1200 g/m3. The median particle size of the sediment is 0.05, 0.15, 0.28, 0.45 mm, and the inner diameter of the heat exchange tube is 20 mm, and the coupling effect of the two is discussed in combination with ultrasonic cavitation. The results show that the scale amount of sand-containing wastewater fluctuates, and the median particle size of 0.45 mm sediment fluctuates more obviously. When the sediment content is constant, with the increase of the median particle size of the sediment, the scale amount decreases gradually, the maximum difference is 16.1 g, and the difference of heat transfer coefficient is 130.49 W/(m2·K). Ultrasonic has a very good anti-scaling effect, the best anti-scaling effect at 1.15 m/s flow rate, the scaling rate is as high as 84%; Compared with the median particle size, the impact of sediment content on the acoustic cavitation effect is more obvious. The increase of sediment content will inhibit the acoustic cavitation effect, and the effect is the most severe within 5-50 min. Compared with the small sediment content, the scale removal rate decreases by 4.9%.

关键词

污水 / 热泵系统 / 超声波应用 / 除垢 / 含沙量 / 泥沙中值粒径 / 换热特性

Key words

sewage / heat pump system / ultrasonic applications / descaling / sediment content / median particle size of sediment / heat transfer characteristics

引用本文

导出引用
钱剑峰, 孔繁鹏, 曹佳玲, 徐莹, 张吉礼, 王海燕. 含沙污水源热泵系统污水侧防除垢与换热特性实验研究[J]. 太阳能学报. 2025, 46(4): 83-90 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2033
Qian Jianfeng, Kong Fanpeng, Cao Jialing, Xu Ying, Zhang Jili, Wang Haiyan. EXPERIMENTAL INVESTIGATION ON ANTI-SCALING AND HEAT TRANSFER CHARACTERISTICS OF SEWAGE SIDE IN SAND-BEARING SEWAGE SOURCE HEAT PUMP SYSTEM[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 83-90 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2033
中图分类号: TB559    TU831.6   

参考文献

[1] 向佳卉, 邹声华, 李文菁. 湖水源热泵系统传热分析及水体热平衡计算[J]. 太阳能学报, 2023, 44(4): 371-376.
XIANG J H, ZOU S H, LI W J.Heat transfer analysis and water heat balance calculation of lake water source heat pump system[J]. Acta energiae solaris sinica, 2023, 44(4): 371-376.
[2] 陈枫, 谈莹莹, 李修真, 等. 分级处理空调送风的地下水源热泵系统性能研究[J]. 太阳能学报, 2023, 44(6): 178-185.
CHEN F, TAN Y Y, LI X Z, et al.Study on performance of groundwater source heat pump system with graded treatment of supply air[J]. Acta energiae solaris sinica, 2023, 44(6): 178-185.
[3] 李文卓, 刘慧卿, 杨伟, 等. 污水源热泵技术应用和效益分析[J]. 能源与节能, 2022(11): 88-91, 212.
LI W Z, LIU H Q, YANG W, et al.Application and benefit analysis of sewage source heat pump technology[J]. Energy and energy conservation, 2022(11): 88-91, 212.
[4] 谭延坤, 钱剑峰, 郑大宇. 声空化作用下城市污水在碳钢管内结垢的研究[J]. 哈尔滨商业大学学报(自然科学版), 2012, 28(5): 583-586, 595.
TAN Y K, QIAN J F, ZHENG D Y.Study on urban sewage scalings in carbon steel tube under acoustic cavitation[J]. Journal of Harbin University of Commerce (natural sciences edition), 2012, 28(5): 583-586, 595.
[5] 张吉礼, 钱剑峰, 孔祥兵, 等. 铜管换热器内颗粒状污垢生长特性试验分析[J]. 土木建筑与环境工程, 2010, 32(5): 60-64.
ZHANG J L, QIAN J F, KONG X B, et al.Characteristics of granular fouling growth of sewage in copper pipe heat exchanger[J]. Journal of civil, architectural & environmental engineering, 2010, 32(5): 60-64.
[6] 钱剑峰, 任启峰, 徐莹, 等. 声空化污水换热器的防除垢与强化换热实验[J]. 哈尔滨工业大学学报, 2018, 50(2): 166-172.
QIAN J F, REN Q F, XU Y, et al.Experiment on the antiscale and descaling and heat transfer enhancement of acoustic cavitation sewage heat exchanger[J]. Journal of Harbin Institute of Technology, 2018, 50(2): 166-172.
[7] 钱剑峰, 任启峰, 徐莹, 等. 污水源热泵系统污水侧声空化防除垢与强化换热特性研究[J]. 太阳能学报, 2018, 39(10): 2728-2736.
QIAN J F, REN Q F, XU Y, et al.Characteristic research on anti-descaling and heat transfer enhancement in sewage side of sewage-source heat pump system with acoustic cavitation[J]. Acta energiae solaris sinica, 2018, 39(10): 2728-2736.
[8] 洪广福, 闫江涛, 陈铁, 等. 油田结垢和化学除垢剂的应用[J]. 当代化工, 2021, 50(10): 2501-2504.
HONG G F, YAN J T, CHEN T, et al.Application of scale formation and chemical scale remover in oil field[J]. Contemporary chemical industry, 2021, 50(10): 2501-2504.
[9] 蔡少辉. 输水管线成垢机理及生物剂除垢技术研究与应用[J]. 当代化工研究, 2023(12): 122-124.
CAI S H.Research and application of scaling mechanism and biological agent descaling technology in water transmission pipeline[J]. Modern chemical research, 2023(12): 122-124.
[10] 马广兴, 徐健, 潘晨晓, 等. 原生污水源热泵换热器流态化在线除垢与磨损实验的研究[J]. 可再生能源, 2021, 39(9): 1183-1189.
MA G X, XU J, PAN C X, et al.Experimental research on primary sewage heat exchanger online fluidized descaling and wear[J]. Renewable energy resources, 2021, 39(9): 1183-1189.
[11] 应振镇, 杨天锋, 陈冬, 等. 用于太阳能超临界CO2布雷顿循环的流态化颗粒换热试验与模拟[J]. 太阳能学报, 2022, 43(3): 274-281.
YING Z Z, YANG T F, CHEN D, et al.Experiment and simulation of fluidizing-particle heat exchanger for supercritical CO2 brayton cycle of CSP[J]. Acta energiae solaris sinica, 2022, 43(3): 274-281.
[12] 韩芸, 巨姗姗, 王志鹏, 等. 地表水及城市污水二级处理出水中颗粒性质及其混凝特性研究[J]. 西安建筑科技大学学报(自然科学版), 2008, 40(4): 527-531.
HAN Y, JU S S, WANG Z P, et al.Particle property of surface water and secondary effluent of WWTP and its alternation in coagulation-flocculation process[J]. Journal of Xi’an University of Architecture & Technology(natural science edition), 2008, 40(4): 527-531.
[13] 刘琦峰. 松花江干流泥沙颗粒特性分析[D]. 哈尔滨: 东北农业大学, 2018.
LIU Q F.Analysis of sediment particle characteristics in the main stream of the songhua river[D]. Harbin: Northeast Agricultural University, 2018.
[14] 刘青泉, 陈立. 泥沙对水流紊动影响的进一步分析[J]. 水利学报, 1997, 28(9): 78-83.
LIU Q Q, CHEN L.Further analysis of the effect of particles on flow turbulence[J]. Journal of hydraulic engineering, 1997, 28(9): 78-83.
[15] 张瑞瑾. 河流泥沙动力学[M]. 2版. 北京: 中国水利水电出版社, 1998: 53-54.
ZHANG R J.River sediment dynamics[M]. 2nd ed. Beijing: China Water & Power Press, 1998: 53-54.

基金

国家自然科学基金(51208160); 黑龙江省自然科学基金联合引导项目(LH2023E028); 黑龙江省高校青年人才培养计划(UNPYSCT-2015072)

PDF(1048 KB)

Accesses

Citation

Detail

段落导航
相关文章

/