竖直钻孔地埋管换热器有限空心圆柱面源模型及解析解

施志钢, 张璐瑶, 李志刚, 刘婉清, 刘德民, 蔡超

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 66-73.

PDF(1260 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1260 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 66-73. DOI: 10.19912/j.0254-0096.tynxb.2023-2036

竖直钻孔地埋管换热器有限空心圆柱面源模型及解析解

  • 施志钢1, 张璐瑶1, 李志刚1, 刘婉清1, 刘德民2, 蔡超2
作者信息 +

FINITE HOLLOW CYLINDRICAL SURFACE SOURCE MODEL AND ANALYTICAL SOLUTION FOR VERTICAL BOREHOLE GROUND BURIED TUBE HEAT EXCHANGER

  • Shi Zhigang1, Zhang Luyao1, Li Zhigang1, Liu Wanqing1, Liu Demin2, Cai Chao2
Author information +
文章历史 +

摘要

提出一种描述有限长空心圆柱面源(FHCS)的新模型,利用格林函数方法进行求解,得出该模型的解析解。将该模型与已有的有限线源模型(FLS)和有限柱面源模型(FCS)进行对比分析,结果表明:在深度方向上,3个模型的变化趋势一致,差异性较小。当开始运行时间较短时,FHCS的温升大于FCS,FLS的温升极小;当运行时间较长时,3个模型的温差减小。在此模型基础上研究钻孔和周围土壤的传热特性,深入分析不同时间、径向距离、钻孔半径和轴向方向上的温度分布。研究表明,有限长空心圆柱面热源模型能揭示竖直钻孔地埋管换热器钻孔的传热特性。

Abstract

A novel model is introduced to describe the finite length hollow cylindrical surface source(FHCS), and an analytical solution for this innovative model is obtained using Green’s function method. A comparative analysis was conducted between the proposed model, finite line source model(FLS), and finite cylindrical surface source model(FCS). The research results show that in the vertical direction, the three models exhibit consistent variation trends with relatively small differences. When the operating time is short, the temperature rise of FHCS is greater than that of FCS, while FLS experiences minimal temperature rise. However, as the operating time increases, the temperature differences among the three models decrease. Based on this model, the temperature distributions in the borehole and surrounding soil were examined, followed by a thorough comparative analysis across different times, radial distances, borehole radius and axial orientations. The study demonstrates that the finite hollow cylindrical surface source model can reveal the heat transfer characteristics of boreholes.

关键词

地热能 / 地源热泵 / 换热器 / 温度分布 / 解析模型 / 格林函数

Key words

geothermal energy / ground source heat pumps / heat exchangers / temperature distribution / analytical models / Green's function

引用本文

导出引用
施志钢, 张璐瑶, 李志刚, 刘婉清, 刘德民, 蔡超. 竖直钻孔地埋管换热器有限空心圆柱面源模型及解析解[J]. 太阳能学报. 2025, 46(4): 66-73 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2036
Shi Zhigang, Zhang Luyao, Li Zhigang, Liu Wanqing, Liu Demin, Cai Chao. FINITE HOLLOW CYLINDRICAL SURFACE SOURCE MODEL AND ANALYTICAL SOLUTION FOR VERTICAL BOREHOLE GROUND BURIED TUBE HEAT EXCHANGER[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 66-73 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2036
中图分类号: TK52   

参考文献

[1] 张哲菲, 刘洪涛, 刘攀峰, 等. 中深层地热地埋管实际运行影响因素研究[J]. 太阳能学报, 2022, 43(12): 503-509.
ZHANG Z F, LIU H T, LIU P F, et al.Study on actual operation and influencing factors of middle-deep geothermal buried pipe[J]. Acta energiae solaris sinica, 2022, 43(12): 503-509.
[2] 朱强, 杨轩, 马凌, 等. 中深层地热单井循环系统传热强化方法研究[J]. 太阳能学报, 2023, 44(1): 410-417.
ZHU Q, YANG X, MA L, et al.Research on heat transfer enhancement method of medium-deep single geothermal well circulation system[J]. Acta energiae solaris sinica, 2023, 44(1): 410-417.
[3] 张晨, 关鹏, 段新胜, 等. 地埋管间断工作进出孔平均温度预测方法研究[J]. 太阳能学报, 2022, 43(5): 30-35.
ZHANG C, GUAN P, DUAN X S, et al.Research on prediction of average inlet and outlet temperature of ground heat exchangers in intermittent operation condition[J]. Acta energiae solaris sinica, 2022, 43(5): 30-35.
[4] BI Y H, WANG X H, LIU Y, et al.Comprehensive exergy analysis of a ground-source heat pump system for both building heating and cooling modes[J]. Applied energy, 2009, 86(12): 2560-2565.
[5] ZHAI Y J, ZHANG T Z, TAN X F, et al.Environmental impact assessment of ground source heat pump system for heating and cooling: a case study in China[J]. The international journal of life cycle assessment, 2022, 27(3): 395-408.
[6] ZHANG T Z, ZHAI Y J, FENG S T, et al.Does it pay to develop a ground source heat pump system? Evidence from China[J]. Journal of environmental management, 2022, 305: 114378.
[7] JIAO K T, SUN C Z, YANG R T, et al.Long-term heat transfer analysis of deep coaxial borehole heat exchangers via an improved analytical model[J]. Applied thermal engineering, 2021, 197: 117370.
[8] FANG L, DIAO N R, SHAO Z K, et al.A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers[J]. Energy and buildings, 2018, 167: 79-88.
[9] LAW Y L E, DWORKIN S B. Characterization of the effects of borehole configuration and interference with long term ground temperature modelling of ground source heat pumps[J]. Applied energy, 2016, 179: 1032-1047.
[10] DENG J W, WEI Q P, HE S, et al.Simulation analysis on the heat performance of deep borehole heat exchangers in medium-depth geothermal heat pump systems[J]. Energies, 2020, 13(3): 754.
[11] TANG F J, HOSSEIN N.Long-term performance of a shallow borehole heat Exchanger installed in a geothermal field of Alsace region[J]. Renewable energy, 2018, 128: 210-222.
[12] 蔡皖龙, 刘俊, 王沣浩, 等. 深层地埋管换热器换热性能模拟及稳定性研究[J]. 太阳能学报, 2020, 41(2): 158-164.
CAI W L, LIU J, WANG F H, et al.Research on heat transfer performance and stability of deep borehole heat exchanger[J]. Acta energiae solaris sinica, 2020, 41(2): 158-164.
[13] CUI Y L, ZHU J, TWAHA S, et al.A comprehensive review on 2D and 3D models of vertical ground heat exchangers[J]. Renewable and sustainable energy reviews, 2018, 94: 84-114.
[14] ESKILSON P.Thermal analysis of heat extraction boreholes[M]. Lund: Lund University, 1987.
[15] ZENG H Y, DIAO N R, FANG Z H.A finite line-source model for boreholes in geothermal heat exchangers[J]. Heat transfer—Asian research, 2002, 31(7): 558-567.
[16] 李鹏. 渗流对岩土体传热性能影响及热泵系统换热效率优化研究[D]. 武汉: 中国地质大学, 2023.
LI P.Study on the effect of seepage on heat transfer performance of rock and soil mass and optimization of heat transfer efficiency of heat pump system[D]. Wuhan: China University of Geosciences, 2023
[17] INGERSOLL L R, ZOBEL O J, INGERSOLL A C.Heat conduction[M]. University of Wisconsin Press, 1954.
[18] CARSLAW H S, JAEGER J C.Conduction of heat in solids[J]. 2nd edition. London: Oxford University Press, 1959.
[19] KAVANAUGH S.Simulation and experimental verification of vertical ground-coupled heat pump systems[D]. Stillwater: Oklahoma State University, 1985.
[20] MAN Y, YANG H X, DIAO N R, et al.A new model and analytical solutions for borehole and pile ground heat exchangers[J]. International journal of heat and mass transfer, 2010, 53(13/14): 2593-2601.
[21] CONTI P.Dimensionless maps for the validity of analytical ground heat transfer models for GSHP applications[J]. Energies, 2016, 9(11): 890.
[22] 张琳邡, 张东海, 周扬, 等. 分层岩土中地埋管换热器传热解析模型与分析[J]. 太阳能学报, 2022, 43(10): 378-385.
ZHANG L F, ZHANG D H, ZHOU Y, et al.Analytical mode and analysis of heat transfer of ground heat exchangers in layered stratum[J]. Acta energiae solaris sinica, 2022, 43(10): 378-385.
[23] HAHN D W, ÖZIŞIK M N. Heat Conduction[M]. 3nd ed. John Wiley & Sons, 2012.
[24] GRADSHTEYN I S, RYZHIK I M.Table of integrals, series, and products[M]. New York: Academic Press, 2014.
[25] 张长兴, 胡松涛, 李绪泉. 格林函数法在竖直U型地埋管传热计算中的应用[J]. 太阳能学报, 2010, 31(2): 158-162.
ZHANG C X, HU S T, LI X Q.Application of green function method in calculation on heat conduction of vertical U-tubes heat exchanger[J]. Acta energiae solaris sinica, 2010, 31(2): 158-162.
[26] 战国会, 俞亚南. 地源热泵有限长圆柱面和圆柱体热源模型[J]. 浙江大学学报(工学版), 2011, 45(6): 1104-1107.
ZHAN G H, YU Y N.Finite long cylindrical surface and cylinder source model of ground source heat pump[J]. Journal of Zhejiang University (engineering science), 2011, 45(6): 1104-1107.
[27] LI M, LAI A.Heat-source solutions to heat conduction in anisotropic media with application to pile and borehole ground heat exchangers[J]. Applied energy, 2012, 96: 451-458.

基金

德阳市揭榜挂帅重大攻关项目(2022JBZG002); 国家自然科学基金(52078257); 青岛市科技计划项目基金(21-1-4-sf-13-nsh)

PDF(1260 KB)

Accesses

Citation

Detail

段落导航
相关文章

/