基于两步Pair-Copula的光伏阵列异常数据辨识方法

黄煜, 张潇潇, 胡松林, 窦春霞, 洪奕, 宋玮琼

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 10-21.

PDF(7965 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(7965 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 10-21. DOI: 10.19912/j.0254-0096.tynxb.2023-2043

基于两步Pair-Copula的光伏阵列异常数据辨识方法

  • 黄煜1, 张潇潇1, 胡松林1, 窦春霞1, 洪奕2, 宋玮琼3
作者信息 +

ANOMALY DATA DETECTION METHOD FOR PHOTOVOLTAIC ARRAYS BASED ON TWO-STEP PAIR-COPULA MODELING

  • Huang Yu1, Zhang Xiaoxiao1, Hu Songlin1, Dou Chunxia1, Hong Yi2, Song Weiqiong3
Author information +
文章历史 +

摘要

为有效进行光伏阵列的性能监控和功率预测等重要工作,如何提升光伏数据的质量便成为当下亟待解决的问题。提出一种基于两步Pair-Copula的光伏阵列异常数据识别方法。该方法分为两个步骤,第一步是对光伏阵列直流侧电流进行异常值识别;第二步以第一步为基础,对光伏直流侧电压进行异常值识别。具体而言,首先基于Pair-Copula对光伏电流、太阳辐照度和温度之间的相依结构进行建模,并采用赤池信息准则优化Copula函数。然后建立光伏电流的条件概率模型,并求解出条件概率置信区间。再以光伏电流的置信区间为主要判据,进行电流异常值的识别和剔除。最后,基于上一步得到的数据,重复上述步骤,对光伏电压值进行异常值的剔除。通过仿真实验结果看出,与其他异常识别方法相比,该文提出的方法在保持低识别错误率的同时,具有更高的识别准确率。

Abstract

To optimally monitor photovoltaic arrays and forecast their power production, improving the quality of photovoltaic data is an essential and urgent task. To this end, this paper introduces a method for the identification of anomalous data in photovoltaic arrays based on a two-step Pair-Copula approach. This method is divided into two stages: the first stage involves the identification of outliers in the direct current side of the photovoltaic array, while the second stage, building upon the first, involves the identification of outliers in the photovoltaic direct current side voltage. More specifically, the Pair-Copula is utilized to model the dependence structure between photovoltaic current, irradiance, and temperature, with Akaike information criterion employed to optimize the Copula function. Subsequently, a conditional probability model for the photovoltaic current is established, and the formula for calculating the confidence interval of the conditional probability is derived. The confidence interval of the photovoltaic current is then used as the primary criterion for identifying and eliminating current outliers. Finally, building upon the data obtained in the previous step, the aforementioned procedure is repeated to eliminate voltage outliers. The results of simulation experiments demonstrate that, compared with other outlier identification methods, the approach proposed in this paper maintains a low identification error rate while boasting a higher identification accuracy.

关键词

光伏阵列 / 异常辨识 / 相关性理论 / Pair-Copula理论 / 置信区间

Key words

photovoltaic arrays / anomaly detection / correlation theory / Pair-Copula theory / confidence interval

引用本文

导出引用
黄煜, 张潇潇, 胡松林, 窦春霞, 洪奕, 宋玮琼. 基于两步Pair-Copula的光伏阵列异常数据辨识方法[J]. 太阳能学报. 2024, 45(12): 10-21 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2043
Huang Yu, Zhang Xiaoxiao, Hu Songlin, Dou Chunxia, Hong Yi, Song Weiqiong. ANOMALY DATA DETECTION METHOD FOR PHOTOVOLTAIC ARRAYS BASED ON TWO-STEP PAIR-COPULA MODELING[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 10-21 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2043
中图分类号: TK51   

参考文献

[1] 彭道刚, 税纪钧, 王丹豪, 等. “双碳” 背景下虚拟电厂研究综述[J]. 发电技术, 2023, 44(5): 602-615.
PENG D G, SHUI J J, WANG D H, et al.Review of virtual power plant under the background of “dual carbon”[J]. Power generation technology, 2023, 44(5): 602-615.
[2] CAO Y J, LI Q, TAN Y, et al.A comprehensive review of energy internet: basic concept, operation and planning methods, and research prospects[J]. Journal of modern power systems and clean energy, 2018, 6(3): 399-411.
[3] 陈宇翔, 崔凝, 李斌, 等. 积灰性质对光伏组件输出性能影响研究[J]. 太阳能学报, 2024, 45(1): 11-19.
CHEN Y X, CUI N, LI B, et al.Research on effect of dust deposition properties on output performance of photovoltaic modules[J]. Acta energiae solaris sinica, 2024, 45(1): 11-19.
[4] 解宝, 李萍宇, 苏绎仁, 等. 局部阴影下光伏阵列的最大功率点跟踪算法研究[J]. 太阳能学报, 2023, 44(12): 47-52.
XIE B, LI P Y, SU Y R, et al.Research on maximum power point tracking algorithm of PV array under local shadow[J]. Acta energiae solaris sinica, 2023, 44(12): 47-52.
[5] 马铭遥, 王海松, 马文婷, 等. 基于S-V特性分析的晶硅光伏组件阴影遮挡故障诊断[J]. 太阳能学报, 2022, 43(9): 64-72.
MA M Y, WANG H S, MA W T, et al.Partial shadow fault diagnosis of crystalline silicon photovoltaic module based on S-V characteristic analysis[J]. Acta energiae solaris sinica, 2022, 43(9): 64-72.
[6] 王元章, 李智华, 吴春华, 等. 基于BP神经网络的光伏组件在线故障诊断[J]. 电网技术, 2013, 37(8): 2094-2100.
WANG Y Z, LI Z H, WU C H, et al.A survey of online fault diagnosis for PV module based on BP neural network[J]. Power system technology, 2013, 37(8): 2094-2100.
[7] 韩伟, 王宏华, 王成亮, 等. 基于参数辨识的光伏组件故障诊断模型[J]. 电网技术, 2015, 39(5): 1198-1204.
HAN W, WANG H H, WANG C L, et al.Parameter identification based fault diagnosis model of photovoltaic modules[J]. Power system technology, 2015, 39(5): 1198-1204.
[8] 李松浓, 晏尧, 向菲, 等. 光伏直流系统故障电弧检测方法研究综述[J]. 电测与仪表, 2024, 61(2): 10-16.
LI S N, YAN Y, XIANG F, et al.A comprehensive review on detection method for DC fault arc in photovoltaic system[J]. Electrical measurement & instrumentation, 2024, 61(2): 10-16.
[9] ZHAO Y, LEHMAN B, BALL R, et al.Outlier detection rules for fault detection in solar photovoltaic arrays[C]//2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). Long Beach, CA, USA, 2013: 2913-2920.
[10] 时珉, 尹瑞, 胡傲宇, 等. 基于滑动标准差计算的光伏阵列异常数据清洗办法[J]. 电力系统保护与控制, 2020, 48(6): 108-114.
SHI M, YIN R, HU A Y, et al.A novel photovoltaic array outlier cleaning algorithm based on moving standard deviation[J]. Power system protection and control, 2020, 48(6): 108-114.
[11] 陈瑶, 陈晓宁. 基于自适应Kmeans和LSTM的短期光伏发电预测[J]. 电测与仪表, 2023, 60(7): 94-99.
CHEN Y, CHEN X N.Prediction of short-term photovoltaic power generation based on adaptive Kmeans and LSTM[J]. Electrical measurement & instrumentation, 2023, 60(7): 94-99.
[12] LONG H, SANG L W, WU Z J, et al.Image-based abnormal data detection and cleaning algorithm via wind power curve[J]. IEEE transactions on sustainable energy, 2020, 11(2): 938-946.
[13] LIU F T, TING K M, ZHOU Z H.Isolation forest[C]//2008 Eighth IEEE International Conference on Data Mining. Pisa, Italy, 2008: 413-422.
[14] LI G, DUAN Z, LIANG L, et al.Outlier data mining method considering the output distribution characteristics for photovoltaic arrays and its application[J]. Energy reports, 2020, 6: 2345-2357.
[15] 杨茂, 黄鑫. 基于光照过程特征分析的光伏功率异常数据识别算法[J]. 电力系统自动化, 2019, 43(6): 64-69.
YANG M, HUANG X.Abnormal data identification algorithm for photovoltaic power based on characteristics analysis of illumination process[J]. Automation of electric power systems, 2019, 43(6): 64-69.
[16] ZHENG L, HU W, MIN Y.Raw wind data preprocessing: a data-mining approach[J]. IEEE transactions on sustainable energy, 2015, 6(1): 11-19.
[17] WANG Y, INFIELD D G, STEPHEN B, et al.Copula-based model for wind turbine power curve outlier rejection[J]. Wind energy, 2014, 17(11): 1677-1688.
[18] 吕清泉, 张珍珍, 马彦宏, 等. 区域光伏发电出力特性分析研究[J]. 发电技术, 2022, 43(3): 413-420.
LYU Q Q, ZHANG Z Z, MA Y H, et al.Analysis and research on output characteristics of regional photovoltaic power generation[J]. Power generation technology, 2022, 43(3): 413-420.
[19] 全勇, 吴建高, 陈艳, 等. 风向角和倾角对光伏阵列风荷载的影响[J]. 太阳能学报, 2024, 45(1): 25-31.
QUAN Y, WU J G, CHEN Y, et al.Influence of wind direction and inclination angle on wind load of photovoltaic arrays[J]. Acta energiae solaris sinica, 2024, 45(1): 25-31.
[20] 朱红路, 刘珠慧. 环境因素影响下的光伏系统出力特性分析[J]. 华北电力技术, 2014(8): 50-55.
ZHU H L, LIU Z H.PV system output analysis of environmental factors affect[J]. North China electric power, 2014(8): 50-55.
[21] AAS K, CZADO C, FRIGESSI A, et al.Pair-copula constructions of multiple dependence[J]. Insurance: mathematics and economics, 2009, 44(2): 182-198.
[22] 龚莺飞, 鲁宗相, 乔颖, 等. 基于Copula理论的光伏功率高比例异常数据机器识别算法[J]. 电力系统自动化, 2016, 40(9): 16-22, 55.
GONG Y F, LU Z X, QIAO Y, et al.Copula theory based machine identification algorithm of high proportion of outliers in photovoltaic power data[J]. Automation of electric power systems, 2016, 40(9): 16-22, 55.
[23] 龚莺飞, 鲁宗相, 乔颖, 等. 光伏功率预测技术[J]. 电力系统自动化, 2016, 40(4): 140-151.
GONG Y F, LU Z X, QIAO Y, et al.An overview of photovoltaic energy system output forecasting technology[J]. Automation of electric power systems, 2016, 40(4): 140-151.
[24] 许彪, 徐青山, 黄煜, 等. 基于藤copula分位数回归的光伏功率日前概率预测[J]. 电网技术, 2021, 45(11): 4426-4435.
XU B, XU Q S, HUANG Y, et al.Day-ahead probabilistic forecasting of photovoltaic power based on vine copula quantile regression[J]. Power system technology, 2021, 45(11): 4426-4435.
[25] ZHANG X L, LIU Q H, LI B, et al. Analysis of output characteristics of photovoltaic system[J]. Advanced materials research, 2012, 512/513/514/515: 17-22.
[26] GENEST C, RÉMILLARD B, BEAUDOIN D. Goodness-of-fit tests for copulas: a review and a power study[J]. Insurance: mathematics and economics, 2009, 44(2): 199-213.
[27] BRECHMANN E C, CZADO C, AAS K.Truncated regular vines in high dimensions with application to financial data[J]. Canadian journal of statistics, 2012, 40(1): 68-85.
[28] 朱倩雯, 叶林, 赵永宁, 等. 风电场输出功率异常数据识别与重构方法研究[J]. 电力系统保护与控制, 2015, 43(3): 38-45.
ZHU Q W, YE L, ZHAO Y N, et al.Methods for elimination and reconstruction of abnormal power data in wind farms[J]. Power system protection and control, 2015, 43(3): 38-45.
[29] 毛李帆, 姚建刚, 金永顺, 等. 中长期负荷预测的异常数据辨识与缺失数据处理[J]. 电网技术, 2010, 34(7): 148-153.
MAO L F, YAO J G, JIN Y S, et al.Abnormal data identification and missing data filling in medium-and long-term load forecasting[J]. Power system technology, 2010, 34(7): 148-153.
[30] 赵书强, 张婷婷, 李志伟, 等. 基于数值特性聚类的日前光伏出力预测误差分布模型[J]. 电力系统自动化, 2019, 43(13): 36-45.
ZHAO S Q, ZHANG T T, LI Z W, et al.Distribution model of day-ahead photovoltaic power forecasting error based on numerical characteristic clustering[J]. Automation of electric power systems, 2019, 43(13): 36-45.

基金

国家自然科学基金(62293500; 62293505; 62303243); 江苏省自然科学基金(BK20210602)

PDF(7965 KB)

Accesses

Citation

Detail

段落导航
相关文章

/