一种基于CNN-LSTM的改进CGAN光伏短期出力场景生成方法

秦卫民, 唐昊, 任曼曼, 梁肖, 王涛, 陈韬

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 263-272.

PDF(2288 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2288 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 263-272. DOI: 10.19912/j.0254-0096.tynxb.2023-2045

一种基于CNN-LSTM的改进CGAN光伏短期出力场景生成方法

  • 秦卫民1, 唐昊1, 任曼曼2, 梁肖2, 王涛1, 陈韬3
作者信息 +

IMPROVED CGAN PHOTOVOLTAIC SHORT-TERM OUTPUT SCENARIO GENERATION METHOD BASED ON CNN-LSTM

  • Qin Weimin1, Tang Hao1, Ren Manman2, Liang Xiao2, Wang Tao1, Chen Tao3
Author information +
文章历史 +

摘要

该文考虑新能源机组出力数据的时空特征,设计一种带有卷积神经网络和长短期记忆网络的判别器网络结构,并使用推土机(EM)距离作为判别器的损失函数,提出一种基于条件对抗生成网络的新能源短期场景生成方法。该方法让模型中的判别器与生成器进行对抗并不断优化,使生成器网络更加准确地提取到条件值及噪声分布与样本分布之间的映射关系,从而更好地生成新能源机组出力场景。该文使用开源的光伏出力数据对模型进行验证和测试,相对于传统的生成式对抗网络方法,所提模型能更加准确地生成契合历史数据特征的新能源出力场景集。

Abstract

This article considers the spatiotemporal characteristics of output data of new energy units and designs a discriminator network structure with convolutional neural networks and long short-term memory networks. The EM distance is used as the loss function of the discriminator, and a new energy short-term scene generation method based on conditional adversarial generation network is proposed. This method trains the generator network through game theory between the generator and discriminator in the model, enabling it to more accurately extract the mapping relationship between conditional values, noise distribution, and sample distribution, thereby better generating new energy unit output scenarios. This article uses open-source photovoltaic output data to validate and test the model, and compares it with the generative adversarial network scene generation method based on fully connected structures. The results show that the proposed model can more accurately generate short-term output scene sets that match the characteristics of real samples.

关键词

光伏发电 / 场景生成 / 生成式对抗网络 / 长短期记忆网络 / 卷积神经网络 / 不确定性

Key words

photovoltaic power / scenario generation / generative adversarial networks / long short term memory networks / convolutional neural network / uncertainty

引用本文

导出引用
秦卫民, 唐昊, 任曼曼, 梁肖, 王涛, 陈韬. 一种基于CNN-LSTM的改进CGAN光伏短期出力场景生成方法[J]. 太阳能学报. 2025, 46(4): 263-272 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2045
Qin Weimin, Tang Hao, Ren Manman, Liang Xiao, Wang Tao, Chen Tao. IMPROVED CGAN PHOTOVOLTAIC SHORT-TERM OUTPUT SCENARIO GENERATION METHOD BASED ON CNN-LSTM[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 263-272 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2045
中图分类号: TM615    TP183   

参考文献

[1] 程静, 苏乐, 岳雷. 新能源接入电力系统的宽频振荡风险识别与抑制[J]. 太阳能学报, 2023, 44(11): 565-574.
CHENG J, SU L, YUE L.Power system broadband oscillation risk identification and suppression for new energy access[J]. Acta energiae solaris sinica, 2023, 44(11): 565-574.
[2] 王旭光, 张可, 李潇, 等. 基于变量相关注意力机制的短期风速预测[J]. 太阳能学报, 2023, 44(8): 467-476.
WANG X G, ZHANG K, LI X, et al.Short-term wind speed forecasting based on variable correlation attention mechanism[J]. Acta energiae solaris sinica, 2023, 44(8): 467-476.
[3] LEE D, BALDICK R.Load and wind power scenario generation through the generalized dynamic factor model[J]. IEEE transactions on power systems, 2017, 32(1): 400-410.
[4] 王冉冉, 高慧敏, 张昕宇. 基于GA-GRU神经网络的光伏MPPT算法[J]. 太阳能学报, 2023, 44(9): 212-219.
WANG R R, GAO H M, ZHANG X Y.MPPT algorithm for photovoltaics based on GA-GRU neural network[J]. Acta energiae solaris sinica, 2023, 44(9): 212-219.
[5] 万灿, 宋永华. 新能源电力系统概率预测理论与方法及其应用[J]. 电力系统自动化, 2021, 45(1): 2-16.
WAN C, SONG Y H.Theories, methodologies and applications of probabilistic forecasting for power systems with renewable energy sources[J]. Automation of electric power systems, 2021, 45(1): 2-16.
[6] 赵书强, 金天然, 李志伟, 等. 考虑时空相关性的多风电场出力场景生成方法[J]. 电网技术, 2019, 43(11): 3997-4004.
ZHAO S Q, JIN T R, LI Z W, et al.Wind power scenario generation for multiple wind farms considering temporal and spatial correlations[J]. Power system technology, 2019, 43(11): 3997-4004.
[7] 董雷, 孟天骄, 陈乃仕, 等. 采用马尔可夫链-多场景技术的交直流主动配电网优化调度[J]. 电力系统自动化, 2018, 42(5): 147-153.
DONG L, MENG T J, CHEN N S, et al.Optimized scheduling of AC/DC hybrid active distribution network using Markov chains and multiple scenarios technique[J]. Automation of electric power systems, 2018, 42(5): 147-153.
[8] GHEISARNEJAD M, KHOOBAN M H.An intelligent non-integer PID controller-based deep reinforcement learning: implementation and experimental results[J]. IEEE transactions on industrial electronics, 2021, 68(4): 3609-3618.
[9] 李湃, 刘纯, 黄越辉, 等. 基于隐马尔科夫模型的多风电场相关性出力时间序列建模方法[J]. 中国电机工程学报, 2019, 39(19): 5683-5691.
LI P, LIU C, HUANG Y H, et al.Modeling correlated power time series of multiple wind farms based on hidden Markov model[J]. Proceedings of the CSEE, 2019, 39(19): 5683-5691.
[10] 肖白, 于龙泽, 刘洪波, 等. 基于生成虚拟净负荷的多能源电力系统日前优化调度[J]. 中国电机工程学报, 2021, 41(21): 7237-7249.
XIAO B, YU L Z, LIU H B, et al.Day ahead optimal dispatch of multi-energy power system based on generating virtual net load[J]. Proceedings of the CSEE, 2021, 41(21): 7237-7249.
[11] 董骁翀, 孙英云, 蒲天骄. 基于条件生成对抗网络的可再生能源日前场景生成方法[J]. 中国电机工程学报, 2020, 40(17): 5527-5536.
DONG X C, SUN Y Y, PU T J.Day-ahead scenario generation of renewable energy based on conditional GAN[J]. Proceedings of the CSEE, 2020, 40(17): 5527-5536.
[12] 于龙泽, 肖白, 孙立国. 风光出力场景生成的条件深度卷积生成对抗网络方法[J]. 东北电力大学学报, 2021, 41(6): 90-99.
YU L Z, XIAO B, SUN L G.Conditional depth convolution generation of confrontation network method for scenery output scenario generation[J]. Journal of Northeast Electric Power University, 2021, 41(6): 90-99.
[13] 黄越辉, 孙亚南, 李驰, 等. 基于条件生成对抗网络的多区域风电短期出力场景生成方法[J]. 电网技术, 2023, 47(1): 63-77.
HUANG Y H, SUN Y N, LI C, et al.Constructing method of short-term output scenarios for multi-regional wind power based on conditional generative adversarial network[J]. Power system technology, 2023, 47(1): 63-77.
[14] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial networks[J]. Advances in neural information processing systems, 2014, 3:2672-2680.
[15] MIRZA M, OSINDERO S.Conditional generative adversarial nets[J]. Computer Science, 2014, 1411(1784): 2672-2680.
[16] GB/T 19963—2011, 风电场接入电力系统技术规定[S].
GB/T 19963—2011, technical rule for connecting wind farm to power system[S].
[17] GB/T 19964—2012, 光伏发电站接入电力系统技术规定[S].
GB/T 19964—2012, technical requirements for connecting photovoltaic power station to power system[S].
[18] HOCHREITER R, PFLUG G C.Financial scenario generation for stochastic multi-stage decision processes as facility location problems[J]. Annals of operations research, 2007, 152(1): 257-272.
[19] ZHOU H, MAO Z H, GAO Y, et al.Renewable energy scenario generation method based on order-preserving Wasserstein distance[C]//2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). Shanghai, China, 2022: 1754-1759.
[20] 刘纯, 黄越辉, 石文辉, 等. 新能源电力系统生产模拟[M]. 北京: 中国电力出版社, 2019.
LIU C, HUANG Y H, SHI W H, et al.New energy power system production simulation[M]. Beijing: China Electric Power Press, 2019.
[21] 李驰, 刘纯, 黄越辉, 等. 基于波动特性的风电出力时间序列建模方法研究[J]. 电网技术, 2015, 39(1): 208-214.
LI C, LIU C, HUANG Y H, et al.Study on the modeling method of wind power time series based on fluctuation characteristics[J]. Power system technology, 2015, 39(1): 208-214.

基金

国家自然科学基金(62273130); 安徽省自然科学基金(2108085UD01); 安徽省高校协同创新项目(GXXT-2023-032); 企业委托项目(JYDW-231273)

PDF(2288 KB)

Accesses

Citation

Detail

段落导航
相关文章

/