带约束构造剪力键插筒式风电机组基础受力性能研究

戚菁菁, 叶一宁, 蒋丽忠, 吕伟荣, 卢倍嵘, 吴记东

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 423-433.

PDF(12197 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(12197 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 423-433. DOI: 10.19912/j.0254-0096.tynxb.2023-2064

带约束构造剪力键插筒式风电机组基础受力性能研究

  • 戚菁菁1, 叶一宁1, 蒋丽忠2, 吕伟荣1, 卢倍嵘1, 吴记东1
作者信息 +

RESEARCH ON MECHANICAL BEHAVIOR OF CYLINDRICAL WIND TURBINE FOUNDATION WITH CONSTRAINED STRUCTURAL SHEAR KEY

  • Qi Jingjing1, Ye Yining1, Jiang Lizhong2, Lyu Weirong1, Lu Beirong1, Wu Jidong1
Author information +
文章历史 +

摘要

针对插筒式风电机组基础在长期风荷载作用下出现不同程度损伤的问题,提出一种带约束构造剪力键插筒式风电机组基础环,基础砼利用带约束构造剪力键优异的抗剪刚度和抗劈裂性能,解决基础的嵌固刚度强韧性不足、风电机组塔筒基础耐久性不足的问题。该研究通过对传统栓钉基础环、穿孔钢筋剪力键基础环以及3组不同埋深的带约束构造剪力键基础环进行缩尺模型试验以及有限元模拟,揭示带约束构造剪力键插筒式风电机组基础的传力机制和损伤破坏机理,分析带约束构造剪力键在风电机组基础中的抗剪性能。结果表明,带约束构造剪力键具有更强的钢筒-砼基础界面刚度优势以及显著传力扩散优势,能更有效地连接钢制基础环与混凝土基础共同工作,充分发挥混凝土与钢筋的材料优点,有效提高砼基础的嵌固刚度及耐久性。

Abstract

Aiming at the problem that the foundation of the cylindrical wind turbine may be damaged to different degrees under long-term wind load, a kind of cylindrical wind turbine foundation ring with constrained structural shear key is proposed. The foundation concrete can make use of the excellent shear stiffness and anti-cracking performance of the constrained structural shear key, in order to solve the problems of insufficient embedded stiffness strength and toughness of the foundation and insufficient durability of the tower cylinder foundation of the wind turbine. In this paper, through scaling model tests and finite element simulation on traditional stud foundation rings, perforated steel shear key foundation rings and three groups of constrained structural shear key foundation rings with different buried depths, the force transmission mechanism and damage mechanism of constrained structural shear key wind turbine foundation are revealed, and the shear resistance of constrained structural shear key in wind turbine foundation is analyzed. The results show that the constrained structural shear key has stronger interfacial stiffness advantage and significant force transfer and diffusion advantage, and can more effectively connect steel foundation ring and concrete foundation to work together, give full play to the material advantages of concrete and reinforcement, and effectively improve the embedded stiffness and durability of concrete foundation.

关键词

风力发电机 / 剪切强度 / 组合结构 / 界面受剪 / 新型剪力键 / 嵌固刚度

Key words

wind turbines / shear strength / composite structure / interface shear / new shear bond / embedding stiffness

引用本文

导出引用
戚菁菁, 叶一宁, 蒋丽忠, 吕伟荣, 卢倍嵘, 吴记东. 带约束构造剪力键插筒式风电机组基础受力性能研究[J]. 太阳能学报. 2025, 46(4): 423-433 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2064
Qi Jingjing, Ye Yining, Jiang Lizhong, Lyu Weirong, Lu Beirong, Wu Jidong. RESEARCH ON MECHANICAL BEHAVIOR OF CYLINDRICAL WIND TURBINE FOUNDATION WITH CONSTRAINED STRUCTURAL SHEAR KEY[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 423-433 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2064
中图分类号: TU398.9   

参考文献

[1] 吕伟荣, 朱峰, 卢倍嵘, 等. 风机基础开孔板连接件剪切受力机理试验研究[J]. 工程力学, 2018, 35(7): 127-138.
LYU W R, ZHU F, LU B R, et al.Experimental study on shear mechanism of perfobond connectors in wind turbines foundation[J]. Engineering mechanics, 2018, 35(7): 127-138.
[2] 吕伟荣, 刘锡军, 张家志, 卢倍嵘著. 风机基础风致疲劳损伤机理、 检测、 设计与加固[M]. 北京: 中国建筑工业出版社, 2017.09.
LYU W R, LU B R, LIU X J, ZHANG J Z.Mechanism, detection, design and reinforcement of wind-induced fatigue damage of fan foundation[M]. Beijing: Chinese Building Industry Press,2017.09.
[3] 李进平, 王振扬, 陈加兴, 等. 陆上风机基础缺陷分析与灌浆加固研究[J]. 华中科技大学学报(自然科学版), 2021, 49(11): 107-112.
LI J P, WANG Z Y, CHEN J X, et al.Study on defect analysis and grouting reinforcement of onshore wind turbine foundation[J]. Journal of Huazhong University of Science and Technology (natural science edition), 2021, 49(11): 107-112.
[4] 申海洋, 宁小美, 冯若强. 预应力锚栓对风机混凝土基础抗裂和耐久性影响[J]. 混凝土, 2021(11): 155-160.
SHEN H Y, NING X M, FENG R Q.Effect of prestressed anchor bolted on crack and durability of concert foundation of wind turbine[J]. Concrete, 2021(11): 155-160.
[5] 张兵海, 崔炜, 刘毅, 等. 预应力锚栓对风机基础应力分布的影响研究[J]. 建筑结构, 2023, 53(S1): 2555-2560.
ZHANG B H, CUI W, LIU Y, et al.Influence study of prestressed anchor bolts on stress distribution in wind turbine foundation[J]. Building structure, 2023, 53(S1): 2555-2560.
[6] XU J J, CHEN K, YANG Y F, et al.Research on the force mechanism of the connection between the foundation ring and the anchor cage ring of the high-altitude onshore wind turbine[J]. Journal of physics: conference series, 2022, 2181(1): 012053.
[7] 刘佳洛. 陆上风力发电机组基础环锚固性能研究[D]. 绵阳: 西南科技大学, 2020.
LIU J L.Research on anchoring performance of base ring of onshore wind turbine[D]. Mianyang: Southwest University of Science and Technology, 2020.
[8] 贾博尧. 风机基础法兰尺寸与埋深的优化研究[D]. 沈阳: 沈阳建筑大学, 2021.
JIA B Y.Research on optimization of flange size and buried deph of fan foundation[D]. Shenyang: Shenyang Jianzhu University, 2021.
[9] 周敏, 谭争光, 陈加兴, 等. 提高风机基础环锚固性能的措施研究[J]. 水电与新能源, 2020, 34(4): 39-42, 61.
ZHOU M, TAN Z G, CHEN J X, et al.Measures to improve the anchorage performance of foundation rings of wind turbines[J]. Hydropower and new energy, 2020, 34(4): 39-42, 61.
[10] 史卜涛, 刘莉媛, 管家伟, 等. 带栓钉基础环式风机基础受力有限元法分析[J]. 建筑结构, 2022, 52(S1): 2378-2381.
SHI B T, LIU L Y, GUAN J W, et al.Finite element analysis of wind turbine foundation with stud ring[J]. Building structure, 2022, 52(S1): 2378-2381.
[11] 陆征然, 马梦梦, 郭超. 陆上风机基础混凝土的可靠度分析[J]. 沈阳建筑大学学报(自然科学版), 2021, 37(6): 1031-1039.
LU Z R, MA M M, GUO C.Reliability analysis of wind turbine foundation concrete on land[J]. Journal of Shenyang Jianzhu University (natural science), 2021, 37(6): 1031-1039.
[12] 张家志, 胡益民, 吕伟荣, 等. 风机基础局部加固设计与计算[J]. 湖南科技大学学报(自然科学版), 2020, 35(4): 38-41.
ZHANG J Z, HU Y M, LYU W R, et al.Design and calculation of local reinforcement of fan foundation[J]. Journal of Hunan University of Science & Technology (natural science edition), 2020, 35(4): 38-41.
[13] 祝卫军, 卢亦焱, 梁鸿骏. 风机分层基础有限元分析与加固方法[J]. 科学技术与工程, 2021, 21(7): 2889-2895.
ZHU W J, LU Y Y, LIANG H J.Finite element analysis and reinforcement method of wind turbine foundation with stratification[J]. Science technology and engineering, 2021, 21(7): 2889-2895.
[14] 刘哲锋, 王健, 黄时雨, 等. 基础环式风机基础的竖锚加固方法研究[J]. 可再生能源, 2021, 39(11): 1483-1488.
LIU Z F, WANG J, HUANG S Y, et al.Research on the reinforcement method with vertical anchor bolts of the wind turbine foundation with the inserted ring[J]. Renewable energy resources, 2021, 39(11): 1483-1488.
[15] 王健, 黄时雨, 李嘉晖, 等. 基础环式风电机组基础疲劳改善的竖锚加固方法研究[J]. 西北水电, 2021(2): 100-106.
WANG J, HUANG S Y, LI J H, et al.Research on reinforcement methods for the fatigue improvement of the wind turbine foundation with inserted ring[J]. Northwest hydropower, 2021(2): 100-106.
[16] 于春波. 风电塔筒的锚杆基础力学性能研究[D]. 沈阳: 东北大学, 2013.
YU C B.Research on the mechanical properties of bolt foundation in wind power[D]. Shenyang: Northeastern University, 2013.
[17] 马人乐, 刘恺, 黄冬平. 反向平衡法兰试验研究[J]. 同济大学学报(自然科学版), 2009, 37(10): 1333-1339.
MA R L, LIU K, HUANG D P.Experimental research of reverse balance flange[J]. Journal of Tongji University (natural science), 2009, 37(10): 1333-1339.
[18] 孙林远, 黄昊, 甄理, 等. 基于塑性损伤模型的某低强风电机组基础加固方案优化设计[J]. 太阳能学报, 2022, 43(4): 453-460.
SUN L Y, HUANG H, ZHEN L, et al.Optimization design of foundation reinforcement scheme for low strength wind turbine based on plastic damage model[J]. Acta energiae solaris sinica, 2022, 43(4): 453-460.
[19] 陈俊岭, 李奇泽, 冯又全. 栓钉在风电机组基础环式基础加固中的应用研究[J]. 太阳能学报, 2021, 42(12): 212-219.
CHEN J L, LI Q Z, FENG Y Q.Application of studs in strengthening of embedded-ring foundation for wind turbine tower[J]. Acta energiae solaris sinica, 2021, 42(12): 212-219.
[20] 陈攀. 带约束构造的栓钉剪力连接件受力性能研究[D]. 湘潭: 湖南科技大学, 2019.
CHEN P.Research on the mechanical properties of stud shear connectors with constrained structure[D]. Xiangtan: Hunan University of Science and Technology, 2019.
[21] 谢祖巍. 带约束构造的栓钉连接件界面抗剪性能研究[D]. 湘潭: 湖南科技大学, 2022.
XIE Z W.Research on interface shear performance of stud shear connectors with constrained structure[D]. Xiangtan: Hunan University of Science and Technology, 2022.
[22] 中华人民共和国住房和城乡建设部. 高层民用建筑钢结构技术规程: JGJ 99—2015[S]. 北京: 中国建筑工业出版社, 2016.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for steel structure of tall building: JGJ 99—2015[S]. Beijing: China Architecture & Building Press, 2016.

基金

湖南省自然科学基金(2021JJ30261; 2019JJ50185; 2018JJ2129); 湖南省教育厅重点项目(20A184); 湖南省自然科学基金(2023JJ30253)

PDF(12197 KB)

Accesses

Citation

Detail

段落导航
相关文章

/