研究尖速比对虚拟同步发电机(VSG)控制下双馈风电机组调频效果的影响,以优化不同工况的控制策略。首先,分析减载双馈风电机组系统的基本控制模型,结合VSG建立包含尖速比变量的双馈风电机组调频系统小信号模型;其次,使用该模型来推导风力发电机组在小信号条件下的等效惯性和尖速比之间的关系方程,根据伯德图和特征根的根轨迹图分析尖速比对VSG控制的双馈风电系统调频动态特性,确定不同尖速比运行下虚拟同步机控制的惯量响应;最后,在Matlab/Simulink中搭建四机二区域模型进行时域仿真,仿真结果验证理论分析的正确性。
Abstract
The influence of tip speed ratio on the frequency regulation effect of doubly-fed wind turbine under the control of virtual synchronous generator(VSG) is studied to optimize the control strategy under different working conditions. Firstly, the basic control model of the load shedding doubly-fed wind turbine system is analyzed, and the small signal model of the frequency modulation system of the doubly-fed wind turbine with the tip speed ratio variable is established by combining the VSG. Secondly, the model is used to derive the relationship equation between the equivalent inertia and the tip speed ratio of the wind turbine under small signal conditions. According to the Bode diagram and the root locus diagram of the characteristic root, the dynamic characteristics of the tip speed ratio on the frequency modulation of the VSG-controlled doubly-fed wind power system are analyzed, and the inertia response of the virtual synchronous machine control under different tip speed ratios is determined. Finally, a four-machine two-area model is built in Matlab/Simulink for time domain simulation, and the simulation results verify the correctness of the theoretical analysis.
关键词
风力发电 /
电机控制 /
虚拟电厂 /
小信号模型 /
叶尖速比
Key words
wind power /
electric machine control /
virtual power plant /
small signal model /
tip speed ratio
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 国家能源局发布2024年1-8月份全国电力工业统计数据[J]. 电力勘测设计, 2024, (9): 39.
The National Energy Administration released the national power industry statistics for January-August 2024[J].Electric power survey & design, 2024, (9): 39.
[2] 杨德健, 许益恩, 郑太英, 等. 基于可变增益的双馈风电机组频率波动平抑方法[J]. 太阳能学报, 2023, 44(4): 173-179.
YANG D J, XU Y E, ZHENG T Y, et al.Frequency fluctuation mitigation scheme of doubly-fed wind turbine generator based on variable coefficients[J]. Acta energiae solaris sinica, 2023, 44(4): 173-179.
[3] 张君黎, 徐政. 考虑RoCoF约束的新能源电力系统惯量分区配置方法[J]. 太阳能学报, 2023, 44(9): 18-28.
ZHANG J L, XU Z.Regional inertia configuration method of renewable energy power system considering RoCoF constraint[J]. Acta energiae solaris sinica, 2023, 44(9): 18-28.
[4] 王赟程, 陈新, 张旸, 等. 三相并网逆变器锁相环频率特性分析及其稳定性研究[J]. 中国电机工程学报, 2017, 37(13): 3843-3853.
WANG Y C, CHEN X, ZHANG Y, et al.Frequency characteristics analysis and stability research of phase locked loop for three-phase grid-connected inverters[J]. Proceedings of the CSEE, 2017, 37(13): 3843-3853.
[5] 王磊, 张琛, 李征, 等. 双馈风电机组的虚拟同步控制及弱网运行特性分析[J]. 电力系统保护与控制, 2017, 45(13): 85-90.
WANG L, ZHANG C, LI Z, et al.Virtual synchronous generator control for DFIG wind turbines and its operation characteristics in weak grid[J]. Power system protection and control, 2017, 45(13): 85-90.
[6] 陈志杰, 李凤婷, 黄蓉. 计及需求响应的含风电电力系统旋转备用优化配置策略[J]. 电力系统保护与控制, 2020, 48(13): 117-122.
CHEN Z J, LI F T, HUANG R.Spinning reserve optimal configuration strategy of a wind power system with demand response[J]. Power system protection and control, 2020, 48(13): 117-122.
[7] 何欣, 钟诚, 拜润卿, 等. 基于修改功率跟踪特性曲线的风电机组减载调频策略研究[J]. 智慧电力, 2021, 49(8): 39-45.
HE X, ZHONG C, BAI R Q, et al.Load reduction frequency modulation strategy of wind turbine based on modifying power tracking characteristic curve[J]. Smart power, 2021, 49(8): 39-45.
[8] YANG P H, HE B, WANG B, et al.Coordinated control of rotor kinetic energy and pitch angle for large-scale doubly fed induction generators participating in system primary frequency regulation[J]. IET renewable power generation, 2021, 15(8): 1836-1847.
[9] 李少林, 秦世耀, 王瑞明, 等. 一种双馈风电机组一次调频协调控制策略研究[J]. 太阳能学报, 2020, 41(2): 101-109.
LI S L, QIN S Y, WANG R M, et al.A collaborative control of primary frequency regulation for DFIG-WT[J]. Acta energiae solaris sinica, 2020, 41(2): 101-109.
[10] 李顺, 廖清芬, 唐飞, 等. 高风电渗透率下的自适应低频减载策略研究[J]. 电网技术, 2017, 41(4): 1084-1090.
LI S, LIAO Q F, TANG F, et al.Adaptive underfrequency load shedding strategy considering high wind power penetration[J]. Power system technology, 2017, 41(4): 1084-1090.
[11] 曾雪洋, 张纯, 王顺亮, 等. 基于减载系数变化的风电机组一次调频控制[J]. 电力自动化设备, 2022, 42(8): 119-125, 139.
ZENG X Y, ZHANG C, WANG S L, et al.Primary frequency control of wind turbine based on deloading coefficient variation[J]. Electric power automation equipment, 2022, 42(8): 119-125, 139.
[12] MiLLER N W, SANCHEZ-GASCA J J, PRICE W W, et al. Dynamic modeling of GE 1.5 and 3.6 MW wind turbine-generators for stability simulations[C]//2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No. 03CH37491). IEEE, 2003, 3: 1977-1983.
[13] 凌禹, 贾权. 基于减载的双馈风电机组联合故障穿越方案[J]. 太阳能学报, 2021, 42(5): 437-442.
LING Y, JIA Q.Combined fault ride through scheme based on load-shedding for doubly fed induction generator wind turbines[J]. Acta energiae solaris sinica, 2021, 42(5): 437-442.
[14] WANG S, HU J B, YUAN X M.Virtual synchronous control for grid-connected DFIG-based wind turbines[J]. IEEE journal of emerging and selected topics in power electronics, 2015, 3(4): 932-944.
基金
可再生能源并网全国重点实验室开放基金项目(NYB51202301626)