针对波浪能高效安全利用以及海洋生态环境保护问题,设计一种新型垂直振荡波浪能发电装置。该装置作为一种浅水固定式装置,布置在近岸40 m水深处。仿水葫芦外形的浮子在波浪的作用下进行垂荡运动,采集的往复直线动能通过装置内部的齿轮齿条传动机构转换为旋转动能,再通过电能转换系统将其转换成稳定的电能,实现从波浪能到电能的转换过程,做到波浪能高效安全的利用。分析振荡浮子式波浪能发电装置的工作原理并进行结构设计。基于浮子的运动特性,建立系统内部的数学模型。运用AQWA软件模拟浮子在四级规则波作用下的运动响应,将仿真结果作为输入进行后续联合仿真。运用Recurdyn软件与AMEsim软件搭建机电系统联合仿真模型,对设计方案进行验证。结果表明:在四级规则波浪作用下,发电装置各系统能稳定工作,捕获的平均功率为9.5 kW,充满1组总容量为150 Ah的蓄电池需要48 min。
Abstract
Aiming at the efficient and safe utilization of wave energy and the protection of marine ecological environment, a new type of vertical oscillation wave energy generation device is designed. As a shallow water fixed device, the device is arranged at a depth of 40 meters near the shore. The buoy with the shape of water hyacinth heaves under the action of waves. The collected reciprocating linear kinetic energy is converted into rotational kinetic energy through the rack and pinion transmission mechanism inside the device, and then converted into stable electric energy through the electric energy conversion system to realize, so as to realize the conversion process from wave energy to electric energy, so as to make efficient and safe use of wave energy. The working principle of oscillating buoy wave energy generation device is analyzed and its structure is designed. Based on the motion characteristics of the float, the mathematical model of the system is established. The AQWA software is used to simulate the motion response of the float under the action of four regular waves, and the simulation results are used as input for subsequent joint simulation. Recurdyn software and AMEsim software are used to build a joint simulation model of electromechanical system to verify the design scheme. The results show that under the action of four-level regular waves, each system of the power generation device can work stably. The average power captured is 2.5 kW, and the total capacity of 150 Ah battery pack takes 48 minutes to fill.
关键词
波浪能发电装置 /
可再生能源 /
能量转换 /
垂直振荡 /
多能域系统 /
联合仿真
Key words
wave energy conversion /
renewable energy /
energy conversion /
vertical oscillating /
multi energy domain system /
co-simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王春晓, 于华明, 李松霖, 等. 基于海浪再分析数据的波浪能资源分析[J]. 太阳能学报, 2022, 43(9): 430-436.
WANG C X, YU H M, LI S L, et al.Wave energy resource valuation based on sea wave reanalysis data[J]. Acta energiae solaris sinica, 2022, 43(9): 430-436.
[2] 刘延俊, 武爽, 王登帅, 等. 海洋波浪能发电装置研究进展[J]. 山东大学学报(工学版), 2021, 51(5): 63-75.
LIU Y J, WU S, WANG D S, et al.Research progress of ocean wave energy converters[J]. Journal of Shandong University (engineering science), 2021, 51(5): 63-75.
[3] 赵智坤, 王项南, 张浦阳, 等. 点吸收式波浪能发电装置姿态特性分析[J]. 海洋技术学报, 2023, 42(2): 87-93.
ZHAO Z K, WANG X N, ZHANG P Y, et al.Analysis of attitude characteristics of point absorption wave energy generation device[J]. Journal of ocean technology, 2023, 42(2): 87-93.
[4] 方子帆, 张李鸣, 赵爽, 等. 海洋浮标能量补充系统设计与研究[J]. 机械传动, 2024, 48(2): 54-60.
FANG Z F, ZHANG L M, ZHAO S, et al.Design and research of the energy supplement system for ocean buoys[J]. Journal of mechanical transmission, 2024, 48(2): 54-60.
[5] 刘艳娇, 彭爱武, 黄铭冶. 海洋波浪能发电装置PTO系统研究进展[J]. 太阳能学报, 2023, 44(12): 381-392.
LIU Y J, PENG A W, HUANG M Y.Research progress of PTO system for wave energy converter[J]. Acta energiae solaris sinica, 2023, 44(12): 381-392.
[6] 曹雪玲, 高涛, 王文胜, 等. 单浮筒振荡浮子式波浪能装置的动力特性分析[J]. 太阳能学报, 2022, 43(11): 364-368.
CAO X L, GAO T, WANG W S, et al.Analysis of dynamic characteristics of single oscillating-buoy float-type wave energy device[J]. Acta energiae solaris sinica, 2022, 43(11): 364-368.
[7] 王鑫, 李大鸣, 王兵振, 等. 点吸收式波浪能俘获装置结构优化方法研究[J]. 海洋与湖沼, 2020, 51(2): 293-297.
WANG X, LI D M, WANG B Z, et al.The structural optimization of point absorption in wave energy capture device[J]. Oceanologia et limnologia sinica, 2020, 51(2): 293-297.
[8] 张保成, 邓子伟, 苗雨, 等. 点吸收式振荡浮子水动力学影响因素研究[J]. 太阳能学报, 2022, 43(4): 512-518.
ZHANG B C, DENG Z W, MIAO Y, et al.Research on influencing factors of hydrodynamics of point absorption type oscillating buoys[J]. Acta energiae solaris sinica, 2022, 43(4): 512-518.
[9] 王德莉, 李霁, 杨雯, 等. 振荡浮子式波能装置的功率计算分析及参数设计[J]. 哈尔滨工程大学学报, 2024, 45(2): 406-414.
WANG D L, LI J, YANG W, et al.Power calculation analysis and parameter design of an oscillating float wave energy device[J]. Journal of Harbin Engineering University, 2024, 45(2): 406-414.
[10] 方子帆, 朱畅, 王佳佳, 等. 振荡扑翼波浪能发电装置系统建模与仿真[J]. 机械工程学报, 2022, 58(20): 137-149.
FANG Z F, ZHU C, WANG J J, et al.System modeling and simulation of oscillating flapping-wing wave power generation device[J]. Journal of mechanical engineering, 2022, 58(20): 137-149.
[11] 汪鹏. 基于负载匹配的振荡浮子式波能发电样机设计及其性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2022.
WANG P.Design and performance analysis of oscillating buoy wave energy generation prototype based on load matching[D]. Harbin: Harbin Institute of Technology, 2022.
[12] NAZARI M, GHASSEMI H, et al.Design of the 10 kW point-absorber wave energy converter device at the assaluyeh seaport of Persian Gulf[J]. Iranian journal of energy, 2011, 14: 5-20.
[13] KURNIAWAN A, TRAN T T, BROWN S A, et al.Numerical simulation of parametric resonance in point absorbers using a simplified model[J]. IET renewable power generation, 2021, 15(14): 3186-3205.
[14] HAN M, CAO F F, SHI H D, et al.Parametrical study on an array of point absorber wave energy converters[J]. Ocean engineering, 2023, 272: 113857.
[15] LIANG C W, AI J X, ZUO L.Design, fabrication, simulation and testing of an ocean wave energy converter with mechanical motion rectifier[J]. Ocean engineering, 2017, 136: 190-200.
[16] BACELLI G, RINGWOOD J V.A geometric tool for the analysis of position and force constraints in wave energy converters[J]. Ocean engineering, 2013, 65: 10-18.
基金
国家自然科学基金(51875314); 水电机械设备设计与维护湖北省重点实验室开放基金(2018KJX05)