风力发电机前机座结构分析与系统最优设计研究

王慧, 赵春雨, 柳胜举

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 463-468.

PDF(2448 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2448 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 463-468. DOI: 10.19912/j.0254-0096.tynxb.2023-2082

风力发电机前机座结构分析与系统最优设计研究

  • 王慧, 赵春雨, 柳胜举
作者信息 +

RESEARCH ON MAIN FRAME STRUCTURAL ANALYSIS AND OPTIMAL SYSTEM DESIGN OF WIND TURBINE

  • Wang Hui, Zhao Chunyu, Liu Shengju
Author information +
文章历史 +

摘要

以大型海上风电机组前机座与其相邻系统部件为研究对象,采用有限元方法,建立仿真计算与分析模型,基于控制变量法研究前机座结构形式对各相邻系统部件的影响规律,并通过综合法分析得到相邻系统部件安全性能最优的结构设计。结果表明:相比常规结构,前机座竖向(环形)肋板位于上摩擦片,对偏航组件系统安全系数提高3.3%;其横向肋板位于轴承座与机座接触面后侧,对轴承座组件系统安全系数提高3.4%;后端法兰到轴承座与机座接触面距离适当加长(200 mm),对后机座组件系统安全系数提高2.9%;在保证系统结构安全性的基础上,可实现最大程度上的系统结构减重,达到结构与性能最优化设计。

Abstract

Taking the main frame of a large offshore wind turbine and its adjacent system components as the research object, the simulation calculation and analysis model are established by using finite element method. The influence of the main frame structure on the adjacent system components is researched by the control variable method. And the optimal structural design of the adjacent system component security is obtained by comprehensive analysis. The results show that: Compared to the conventional structure, the vertical (circular) floor of the main frame is located on the upper friction plate. It increases the safety coefficient of the yaw component system by 3.3%. The horizontal floor is located on the rear side of the main frame and main bearing housing connection. It increases the safety coefficient of the main bearing housing component system by 3.4%. The distance between the rear end flange and contact surface between the main frame and main bearing base is properly extended (200 mm). It increases the safety coefficient of the rear frame component system by 2.9%. On the basis of ensuring the safety of the system structure, the weight of the system structure is reduced by the maximum degree to achieve the optimization design of structure and performance.

关键词

风电机组 / 前机座 / 结构设计 / 系统优化设计 / 强度校核

Key words

wind turbines / main frame / structural design / system optimization design / strength assessment

引用本文

导出引用
王慧, 赵春雨, 柳胜举. 风力发电机前机座结构分析与系统最优设计研究[J]. 太阳能学报. 2025, 46(4): 463-468 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2082
Wang Hui, Zhao Chunyu, Liu Shengju. RESEARCH ON MAIN FRAME STRUCTURAL ANALYSIS AND OPTIMAL SYSTEM DESIGN OF WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 463-468 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2082
中图分类号: TK83   

参考文献

[1] 田德, 胡玥, 陶立壮. 风电齿轮箱浮动构件支撑刚度的分析与优化设计[J]. 太阳能学报, 2023, 44(4): 195-202.
TIAN D, HU Y, TAO L Z.Analysis and optimization design of support stiffness of floating components of wind turbine gearbox[J]. Acta energiae solaris sinica, 2023, 44(4): 195-202.
[2] 杨书仪, 赵康康, 张鸿泰, 等. 风电机组偏航制动器制动稳定性分析[J]. 太阳能学报, 2023, 44(1): 188-195.
YANG S Y, ZHAO K K, ZHANG H T, et al.Braking stability analysis of wind turbines yaw brake[J]. Acta energiae solaris sinica, 2023, 44(1): 188-195.
[3] 欧阳儒贤, 胡良明, 向凯, 等. 风力发电机组塔筒螺栓断裂对结构的影响分析[J]. 可再生能源, 2021, 39(11): 1489-1494.
OUYANG R X, HU L M, XIANG K, et al.Analysis of the influence of bolt fracture on structure of wind turbine tower[J]. Renewable energy resources, 2021, 39(11): 1489-1494.
[4] 齐涛, 董姝言, 苏凤宇, 等. MW级风电机组的后机架结构计算及优化[J]. 可再生能源, 2016, 34(7): 1052-1057.
QI T, DONG S Y, SU F Y, et al.Strength assessment and optimization of sub-frame of MW wind turbine[J]. Renewable energy resources, 2016, 34(7): 1052-1057.
[5] 秦梦飞, 施伟, 柴威, 等. 台风过境下大型单桩式海上风机结构动力特性研究[J]. 力学学报, 2022, 54(4): 881-891.
QIN M F, SHI W, CHAI W, et al.Research on dynamic characteristics of large-scale monopile offshore wind turbine under typhoon event[J]. Chinese journal of theoretical and applied mechanics, 2022, 54(4): 881-891.
[6] 周玲, 任永. 大偏航角下基于IPC的风力机变速率停机控制研究[J]. 太阳能学报, 2023, 44(3): 178-184.
ZHOU L, REN Y.Research on IPC-based variable-speed shutdown control of wind turbines under large yaw angles[J]. Acta energiae solaris sinica, 2023, 44(3): 178-184.

PDF(2448 KB)

Accesses

Citation

Detail

段落导航
相关文章

/