以水平参数摆波能装置为研究对象,通过物理模型试验、数值模拟和强迫激励模型,对装置多自由度下的运动和获能规律进行研究。装置在系泊状态下多自由度运动平均功率出现两个峰值,第一峰值与外浮体自身性质有关,第二峰值受系泊影响。将动力输出装置(PTO)阻尼形式、外浮体形状、系泊系统为变量,研究表明在斋堂岛海域,线性阻尼性能优于常值阻尼;外浮体为半球形和半圆柱形时装置获能较好;系泊轴向刚度、线密度对获能第二峰值的影响显著。
Abstract
A horizontal parametric pendulum wave energy converter is used as a research object to study the motion and energy acquisition law of the device under multiple degrees of freedom through model test, numerical simulation and prescribed excitation model. The average power of the device in the moored state with multiple degrees of freedom motion appears two peaks. The first peak is related to the nature of the outer float itself and the second peak is affected by the mooring. In this paper, taking the PTO damping form, the shape of the outer floater, and the mooring system as the research variables, and the study shows that the linear damping performance is better than the constant value damping in the sea area of Zhaitang Island. when the outer flouting body is hemispherical or hemispherical, the device obtains better performance. The influence of mooring axial stiffness and linear density on the second peak of energy acquisition is significant.
关键词
波能转换 /
能量吸收 /
系泊 /
浮体 /
摆体 /
强迫激励模型
Key words
wave energy conversion /
energy absorption /
mooring /
buoy /
pendulum /
prescribed excitation model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 周逸伦, 张亚群, 盛松伟, 等. 振荡水柱式波浪能供电浮标水动力学性能研究[J]. 太阳能学报, 2023, 44(3): 298-303.
ZHOU Y L, ZHANG Y Q, SHENG S W, et al.Study on hydrodynamic performance of oscillating water column wave energy-powered buoy[J]. Acta energiae solaris sinica, 2023, 44(3): 298-303.
[2] BABARIT A, CLE’MENT A H, GILLOTEAUX J C. Optimization and time-domain simulation of the SEAREV wave energy converter[C]//ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering. Halkidiki, Greece, 2008: 703-712.
[3] CORDONNIER J, GORINTIN F, DE CAGNY A, et al.SEAREV: case study of the development of a wave energy converter[J]. Renewable energy, 2015, 80: 40-52.
[4] NICOLA P, GIOVANNI B, BIAGIO P, et al.Wave tank testing of a pendulum wave energy converter 1: 12 scale model[J]. International journal of applied mechanics, 2017, 9(2): 1750024.
[5] SIRIGU S A, FOGLIETTA L, GIORGI G, et al.Techno-economic optimisation for a wave energy converter via genetic algorithm[J]. Journal of marine science and engineering, 2020, 8(7): 482.
[6] CAI Q L, ZHU S Y.Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters[J]. Applied energy, 2021, 298: 117228.
[7] 王彤彤, 肖龙飞, 杨立军. 浸没式参数激励摆波能转换装置能量俘获特性研究[J]. 振动与冲击, 2020, 39(3): 199-204.
WANG T T, XIAO L F, YANG L J.Energy capture feature of wave energy converter with submerged parametric excitation pendulum[J]. Journal of vibration and shock, 2020, 39(3): 199-204.
[8] WU J M, QIAN C, ZHENG S M, et al.Investigation on the wave energy converter that reacts against an internal inverted pendulum[J]. Energy, 2022, 247: 123493.
[9] GRAVES J, KUANG Y, ZHU M L.Counterweight-pendulum energy harvester with reduced resonance frequency for unmanned surface vehicles[J]. Sensors and actuators A: physical, 2021, 321: 112577.
[10] 李绍勋, 陈卫星. 船用双摆翼式波浪能捕获装置设计与试验[J]. 机械设计与研究, 2022, 38(5): 29-34, 41.
LI S X, CHEN W X.Design and experiment of double-pendulum wave energy converter for unmanned surface vessels[J]. Machine design & research, 2022, 38(5): 29-34, 41.
[11] WELLO. Doing what no one else has, full scale wave energy generation[EB/OL]. https://wello.eu/2021/09/08/doing-what-no-one-else-has-full-scale-wave-energy-generation/.
[12] BOREN B C, LOMONACO P, BATTEN B A, et al.Design, development, and testing of a scaled vertical axis pendulum wave energy converter[J]. IEEE transactions on sustainable energy, 2017, 8(1): 155-163.
[13] 史宏达, 李向南, 赵晨羽, 等. 偏心摆式波能发电装置的设计与水动力性能研究[J]. 太阳能学报, 2020, 41(4): 296-301.
SHI H D, LI X N, ZHAO C Y, et al.Hydrodynamic study on eccentric pendulum wave energy converter[J]. Acta energiae solaris sinica, 2020, 41(4): 296-301.
[14] JIANG X Q, SHI H D, CAO F F, et al.System analysis and experimental investigation of a pendulum-based wave energy converter[J]. Ocean engineering, 2023, 277: 114300.
[15] SO R, SIMMONS A, BREKKEN T, et al.Development of PTO-sim: a power performance module for the open-source wave energy converter code WEC-sim[C]//ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. St. John’s, Newfoundland, Canada, 2015.
[16] HALL M, GOUPEE A.Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data[J]. Ocean engineering, 2015, 104: 590-603.
[17] LIU Z, QU N, SHI H D.Experimental study on hydrodynamic performance of a wave energy converter within multi-heaving-buoys[J]. International journal of energy research, 2017, 41(9): 1351-1366.
基金
大连理工大学海岸和近海工程国家重点实验室开放基金(LP2312); 国家自然科学基金(52071303); 中国工程院战略研究与咨询项目(2022-DFZD-36); 泰山学者工程专项经费(ts20190914)