基于精细化叠加尾流模型的海上风电场微观选址

黄玲玲, 陈昊, 刘阳

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 477-484.

PDF(1202 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1202 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 477-484. DOI: 10.19912/j.0254-0096.tynxb.2023-2093

基于精细化叠加尾流模型的海上风电场微观选址

  • 黄玲玲1, 陈昊2, 刘阳1
作者信息 +

MICRO SITE SELECTION OF OFFSHORE WIND FARMS BASED ON REFINED SUPERIMPOSED WAKE MODEL

  • Huang Lingling1, Chen Hao2, Liu Yang1
Author information +
文章历史 +

摘要

针对传统的解析尾流叠加模型难以准确反映多台风电机组尾流影响下的风速损耗,而高精度CFD仿真计算时间过长,不适用于风电场机组微观选址优化的问题,基于质量守恒和动量守恒定律推导一种改进尾流叠加模型,并通过与FAST.Farm仿真结果的对比,论证所提改进叠加模型的精确性和快速性。构建一个以全寿命周期成本为目标函数的微观选址模型,并通过自适应被囊群算法求解该模型。通过海上风电场风电机组选址算例结果论证所提算法的有效性和优越性。

Abstract

The conventional analytical model of the wake superposition can not calculate accurately the wind speed losses between the wind turbines while the high-precision CFD simulation takes a long computation time. They are both not quite suitable for the micro site selection for the wind turbines. In this paper, an improved wake superposition model based on the laws of conservation of mass and momentum is proposed and its superiorities of the computing precision and efficiency are verified by comparing with the simulation results of FAST.Farm. Moreover, a micro-site selection optimization model aiming at minimizing the life-cycle cost is also presented and the solution is obtained by the adaptive tunicate swarm algorithm. The effectiveness and superiority of the proposed algorithm is demonstrated by a case study of an offshore wind farm.

关键词

海上风电场 / 尾流 / 微观选址 / FAST.Farm仿真 / 被囊群算法

Key words

offshore wind farm / wakes / micro-siting selection / FAST.Farm simulation / tunicate swarm algorithm

引用本文

导出引用
黄玲玲, 陈昊, 刘阳. 基于精细化叠加尾流模型的海上风电场微观选址[J]. 太阳能学报. 2025, 46(4): 477-484 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2093
Huang Lingling, Chen Hao, Liu Yang. MICRO SITE SELECTION OF OFFSHORE WIND FARMS BASED ON REFINED SUPERIMPOSED WAKE MODEL[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 477-484 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2093
中图分类号: TM614   

参考文献

[1] 姚钢, 杨浩猛, 周荔丹, 等. 大容量海上风电机组发展现状及关键技术[J]. 电力系统自动化, 2021, 45(21): 33-47.
YAO G, YANG H M, ZHOU L D, et al.Development status and key technologies o f large-capacity offshore wind turbines[J]. Automation of electric power systems, 2021, 45(21): 33-47.
[2] LUNDQUIST J K, DUVIVIER K K, KAFFINE D, et al.Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development[J]. Nature energy, 2019, 4: 26-34.
[3] KATIC I, HØJSTRUP J, JENSEN N O. A simple model for cluster efficiency[C]//European Wind Energy Association Conference and Exhibition. Rome, Italy, 1986: 407-410.
[4] BASTANKHAH M, PORTÉ-AGEL F.A new analytical model for wind-turbine wakes[J]. Renewable energy, 2014, 70: 116-123.
[5] GAO X X, LI Y, ZHAO F, et al.Comparisons of the accuracy of different wake models in wind farm layout optimization[J]. Energy exploration & exploitation, 2020, 38(5): 1725-1741.
[6] NIAYIFAR A, PORTÉ-AGEL F.Analytical modeling of wind farms: a new approach for power prediction[J]. Energies, 2016, 9(9): 741.
[7] VOUTSINAS S, RADOS K, ZERVOS A.On the analysis of wake effects in wind parks[J]. Wind engineering, 1990, 14(4): 204-219.
[8] GUNN K, STOCK-WILLIAMS C, BURKE M, et al.Limitations to the validity of single wake superposition in wind farm yield assessment[J]: Journal of physics: conference series, 2016, 749(1): 012003.
[9] ZONG H H, PORTÉ-AGEL F.A momentum-conserving wake superposition method for wind farm power prediction[J]. Journal of fluid mechanics, 2020, 889: A8.
[10] KUO J Y J, ROMERO D A, BECK J C, et al. Wind farm layout optimization on complex terrains-integrating a CFD wake model with mixed-integer programming[J]. Applied energy, 2016, 178: 404-414.
[11] 杨祥生, 赵宁, 田琳琳, 等. 基于Park-Gauss模型考虑大气稳定性对布局优化的影响[J]. 太阳能学报, 2021, 42(3): 43-47.
YANG X S, ZHAO N, TIAN L L, et al.Influence of atmospheric stability on layout optimization based on Park-Gauss model[J]. Acta energiae solaris sinica, 2021, 42(3): 43-47.
[12] 徐佳楠, 张天瑞, 李玉龙. 基于自适应遗传-粒子群优化算法的风电场微观选址优化[J]. 科学技术与工程, 2023, 23(16): 6917-6922.
XU J N, ZHANG T R, LI Y L.Micro-location and optimization of wind farm based on the adaptive GA-PSO algorithm[J]. Science technology and engineering, 2023, 23(16): 6917-6922.
[13] ABKAR M, SHARIFI A, PORTÉ-AGEL F.Wake flow in a wind farm during a diurnal cycle[J]. Journal of turbulence, 2016, 17(4): 420-441.
[14] BASTANKHAH M, WELCH B L, MARTÍNEZ-TOSSAS L A, et al. Analytical solution for the cumulative wake of wind turbines in wind farms[J]. Journal of fluid mechanics, 2021, 911: A53.
[15] 刘漂. 考虑LCOE的风电场微观选址优化及软件开发[D]. 西安: 西安理工大学, 2021.
LIU P.Micro-location optimization and software development of wind farm considering LCOE[D]. Xi’an: Xi’an University of Technology, 2021.
[16] 刘喜梅, 崔阳, 董建明, 等. 基于风电机组可靠性的风电场平准化成本模型研究[J]. 太阳能学报, 2022, 43(10): 304-311.
LIU X M, CUI Y, DONG J M, et al.Research on levelized cost model of wind farms based on wind turbine reliability[J]. Acta energiae solaris sinica, 2022, 43(10): 304-311.
[17] 周雨诗, 张彦, 王海金, 等. 基于ArcGIS与多因子模型的风力发电场选址评估[J]. 太阳能学报, 2023, 44(12): 251-259.
ZHOU Y S, ZHANG Y, WANG H J, et al.Site selection assessment of wind farm based on ArcGIs and multi-factor model[J]. Acta energiae solaris sinica, 2023, 44(12): 251-259.
[18] 柴岩, 李广友, 任生, 等. 多策略融合改进的自适应被囊群算法[J]. 计算机应用研究, 2023, 40(9): 2694-2703, 2712.
CHAI Y, LI G Y, REN S, et al.Multi-strategy fusion improved adaptive tunicate swarm algorithm[J]. Application research of computers, 2023, 40(9): 2694-2703, 2712.
[19] 屈迟文, 彭小宁. 信息共享的记忆被囊群算法[J]. 模式识别与人工智能, 2021, 34(7): 605-618.
QU C W, PENG X N.Memory tunicate swarm algorithm with information sharing[J]. Pattern recognition and artificial intelligence, 2021, 34(7): 605-618.
[20] 穆延非, 王强, 罗坤, 等. 基于动态尾流蜿蜒模型的风力机疲劳损伤评估[J]. 热力发电, 2023, 52(3): 39-48.
MU Y F, WANG Q, LUO K, et al.Fatigue damage assessment of wind turbine based on dynamic wake meandering model[J]. Thermal power generation, 2023, 52(3): 39-48.

基金

国家自然科学基金(52177097); 上海市教育委员会科研创新计划(2021-01-07-00-07-E00122)

PDF(1202 KB)

Accesses

Citation

Detail

段落导航
相关文章

/