Fe3O4对微藻-乙醇液化制备生物油和脱硝生物焦的影响机制研究

张涛, 泮浩翔, 高涣庭, 龚勋

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 619-627.

PDF(1799 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1799 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 619-627. DOI: 10.19912/j.0254-0096.tynxb.2023-2101

Fe3O4对微藻-乙醇液化制备生物油和脱硝生物焦的影响机制研究

  • 张涛1, 泮浩翔1, 高涣庭2, 龚勋2
作者信息 +

EFFECTS OF Fe3O4 ON PREPARATION OF BIO-OIL AND DENITROGENATED BIOCHAR BY MICROALGAE LIQUEFACTION IN ETHANOL

  • Zhang Tao1, Pan Haoxiang1, Gao Huanting2, Gong Xun2
Author information +
文章历史 +

摘要

基于磁性收获后的微藻在乙醇中液化制备高品质生物油,副产物Fe3O4负载的富氮微藻生物焦回收再利用,测试其在低温(150 ℃)条件下的脱硝性能,并通过漫反射傅里叶变换红外光谱表征技术对脱硝潜在路径进行探讨。Fe3O4在液化过程中可促进微藻中蛋白质的分解,提高油产率的同时吡啶及吡咯化合物在生物焦中的占比增加。负载Fe3O4后能显著增加其性能,这是生物焦中各种官能团与Fe3O4在还原反应中共同作用的结果。

Abstract

The microalgae harvested by magnetic separation were liquefied in ethanol to prepare high-quality bio-oil, and the by-product Fe3O4-loaded nitrogen-enrich microalgae biochar was recovered and reused. The denitrification performance at low temperature (150 ℃) was tested, and potential pathways of denitrification were explored by in-situ DRIFTS. The results show that Fe3O4 promotes the decomposition of proteins in microalgae during the liquefaction process and increases the oil yiels. Meanwhile, the percentage of pyridine and pyrrole compounds in the biochar increases. The loading of Fe3O4 can effectively improve the denitrification efficiency of the biochar, which was the result of the synergistic effect of oxygen- and nitrogen-containing functional groups on the surface of algae-based biochar and Fe3O4 in the denitrification reaction.

关键词

微藻 / 生物质 / 生物油 / 生物焦 / 脱硝 / Fe3O4

Key words

microalgae / bio-oil / biomass / biomass char / denitrification / Fe3O4

引用本文

导出引用
张涛, 泮浩翔, 高涣庭, 龚勋. Fe3O4对微藻-乙醇液化制备生物油和脱硝生物焦的影响机制研究[J]. 太阳能学报. 2025, 46(4): 619-627 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2101
Zhang Tao, Pan Haoxiang, Gao Huanting, Gong Xun. EFFECTS OF Fe3O4 ON PREPARATION OF BIO-OIL AND DENITROGENATED BIOCHAR BY MICROALGAE LIQUEFACTION IN ETHANOL[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 619-627 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2101
中图分类号: X701   

参考文献

[1] 仇亿, 程军, 张泽, 等. 氧化石墨烯固体酸催化湿藻油制生物柴油[J]. 太阳能学报, 2021, 42(4): 40-45.
QIU Y, CHENG J, ZHANG Z, et al.Biodiesel production from wet microalgae using graphene oxide as solid acid catalyst[J]. Acta energiae solaris sinica, 2021, 42(4): 40-45.
[2] 苗长林, 吕鹏梅, 王忠铭, 等. 微波辅助组合离子液体直接制备微藻生物柴油[J]. 太阳能学报, 2021, 42(2): 233-238.
MIAO C L, LYU P M, WANG Z M, et al.Preparation of microalgae biodiesel by direct transesterification under microwave-assisted ionic liquid composite conditions[J]. Acta energiae solaris sinica, 2021, 42(2): 233-238.
[3] ZHANG C X, GONG X, PENG Y, et al.Transformation of nitrogen during microalgae model compounds liquefaction in sub-/supercritical ethanol[J]. Fuel, 2022, 311: 122616.
[4] ABO MARKEB A, LLIMÓS-TURET J, FERRER I, et al. The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater[J]. Water research, 2019, 159: 490-500.
[5] 郭思聪, 张凯霞, 刘守军, 等. 煤炭燃烧过程中大气污染物NOx形成与转化研究进展[J]. 应用化工, 2020, 49(12): 3205-3212, 3245.
GUO S C, ZHANG K X, LIU S J, et al.Progresses of research on the formation and transformation of NOx as atmospheric pollutant during coal burning[J]. Applied chemical industry, 2020, 49(12): 3205-3212, 3245.
[6] 赵光耀, 黄权浩, 朱映健, 等. 燃煤机组超低排放改造后SCR烟气脱硝中硫酸氢铵的控制技术[J]. 湖南电力, 2022, 42(5): 101-106.
ZHAO G Y, HUANG Q H, ZHU Y J, et al.Control technology of ammonium bisulphate in denitrification of SCR flue gas after ultra-low emission transformation of coal-fired unit[J]. Hunan electric power, 2022, 42(5): 101-106.
[7] HAN L P, CAI S X, GAO M, et al.Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects[J]. Chemical reviews, 2019, 119(19): 10916-10976.
[8] DAMMA D, ETTIREDDY P, REDDY B, et al.A review of low temperature NH3-SCR for removal of NOx[J]. Catalysts, 2019, 9(4): 349.
[9] WANG J H, ZHAO H W, HALLER G, et al.Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts[J]. Applied catalysis B: environmental, 2017, 202: 346-354.
[10] HAN L P, GAO M, FENG C, et al.Fe2O3-CeO2@Al2O3 nanoarrays on Al-mesh as SO2-tolerant monolith catalysts for NOx reduction by NH3[J]. Environmental science & technology, 2019, 53(10): 5946-5956.
[11] YANG J, REN S, ZHANG T S, et al.Iron doped effects on active sites formation over activated carbon supported Mn-Ce oxide catalysts for low-temperature SCR of NO[J]. Chemical engineering journal, 2020, 379: 122398.
[12] 李艳鹰, 李先春. 生物质活性炭负载零价铁纳米晶簇直接催化还原NO[J]. 化工学报, 2019, 70(3): 1111-1119.
LI Y Y, LI X C.Biomass activated carbon loaded with zero-valent iron nanocrystal clusters for direct catalytic reduction of NO[J]. CIESC journal, 2019, 70(3): 1111-1119.
[13] LIN Y T, LI Y R, XU Z C, et al.Transformation of functional groups in the reduction of NO with NH3 over nitrogen-enriched activated carbons[J]. Fuel, 2018, 223: 312-323.
[14] XU C, CHEN J, LI S Y, et al.N-doped honeycomb-like porous carbon derived from biomass as an efficient carbocatalyst for H2S selective oxidation[J]. Journal of hazardous materials, 2021, 403: 123806.
[15] YANG X, WU X H, CHEN Z Y, et al.Hierarchically porous N-doped carbon nanofibers derived from ZIF-8/PAN composites for benzene adsorption[J]. Journal of applied polymer science, 2021, 138(20): e50431.
[16] 张冠群, 付琼. 1000 MW超临界锅炉脱硝系统入口NOx影响因素分析[J]. 湖南电力, 2015, 35(6): 58-60.
ZHANG G Q, FU Q.Influence factors analysis of denitration system inlet NOx values for 1000 MW unit boilers[J]. Hunan electric power, 2015, 35(6): 58-60.
[17] 熊志波, 郭东旭, 路春美, 等. 铁铈复合氧化物催化剂SCR脱硝反应动力学研究[J]. 燃料化学学报, 2013, 41(4): 506-512.
XIONG Z B, GUO D X, LU C M, et al.Kinetic study on the selective catalytic reduction of NO with NH3 over iron-cerium mixed oxide[J]. Journal of fuel chemistry and technology, 2013, 41(4): 506-512.
[18] 彭建升. γ-Fe2O3基催化剂NH-SCR脱硝特性及动力学研究[D]. 济南: 山东大学, 2015.
PENG J S.Study on denitrification characteristics and kinetics of NH-SCR based on γ-Fe2O3 catalyst[D]. Jinan: Shandong University, 2015.
[19] WANG F B, WANG J, HAN Y, et al.In situ biogas upgrading and fertilizer recovery in anaerobic digestion from Laminaria hydrothermal carbonization process water by Fe-modified hydrochar[J]. ACS sustainable chemistry & engineering, 2020, 8(36): 13623-13633.
[20] WANG S X, GUO R T, PAN W G, et al.The deactivation of Ce/TiO2 catalyst for NH3-SCR reaction by alkali metals: TPD and DRIFT studies[J]. Catalysis communications, 2017, 89: 143-147.
[21] LIU J, LI X Y, ZHAO Q D, et al.Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide: in situ FTIR analysis for structure-activity correlation[J]. Applied catalysis B: environmental, 2017, 200: 297-308.

PDF(1799 KB)

Accesses

Citation

Detail

段落导航
相关文章

/