催化剂与烘焙耦合对榆木热解特性的影响

梅艳阳, 侯靖凡, 李文琪, 陈莹, 郑炎鑫, 侯原浩

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 628-635.

PDF(2201 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2201 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 628-635. DOI: 10.19912/j.0254-0096.tynxb.2023-2106

催化剂与烘焙耦合对榆木热解特性的影响

  • 梅艳阳, 侯靖凡, 李文琪, 陈莹, 郑炎鑫, 侯原浩
作者信息 +

EFFECT OF CATALYST AND TORREFACTION COUPLING ON PYROLYSIS CHARACTERISTICS OF ELM

  • Mei Yanyang, Hou Jingfan, Li Wenqi, Chen Ying, Zheng Yanxin, Hou Yuanhao
Author information +
文章历史 +

摘要

为探究催化剂与烘焙耦合对生物质热解特性的影响,将榆木进行220、250、280 ℃温度下的烘焙,然后以煤灰、生物质灰、泥岩为催化剂,在立式炉中进行热解实验,同时利用热重分析仪(TG)研究催化剂与烘焙耦合对榆木热解失重特性和动力学特性的影响。结果表明:煤灰和生物质灰分别与烘焙耦合能促进热解气中CO2的生成,而泥岩催化热解产氢效果显著。280 ℃下,泥岩与烘焙耦合对酚类物质的提升最明显,可达54.69%;而煤灰和生物质灰分别与烘焙耦合对芳香烃的生成更有利。3种催化剂分别与220 ℃烘焙耦合对气体产率的促进作用最明显。在低温段,泥岩会提高原样热解反应活化能,但与烘焙耦合则使热解反应活化能降低;在高温段,煤灰会降低热解反应活化能,而生物质灰和泥岩则会增加热解反应活化能。

Abstract

In order to investigate the effect of catalyst and torrefaction coupling on the pyrolysis characteristics of biomass, the elm was torrefied under the various temperatures (220, 250, and 280 ℃), and then conducted pyrolysis experiments in a vertical furnace using coal ash, biomass ash, and mudstone as the catalysts, and meanwhile, a thermogravimetric analyzer (TG) was utilized to study the effect of catalyst and torrefaction coupling on the weight loss characteristics and kinetic properties of elmwood pyrolysis. The results show that the coupling of coal ash and biomass ash with torrefaction promotes the generation of CO2 in the pyrolysis gas, while the effect of hydrogen production by mudstone catalyzed pyrolysis is significant. The coupling of mudstone with torrefaction enhances phenolics up to 54.69% at the torrefaction temperature of 280 ℃, while coal ash and biomass ash with torrefaction is more favorable for the generation of aromatic hydrocarbons. The three catalysts coupled respectively respectively with torrefaction at 220 ℃ showes the most obvious promotion of gas yield, respectively. In the low-temperature section, mudstone increases the pyrolysis activation energy of raw sample, but decreases the pyrolysis activation energy of torrefied samples; in the high-temperature section, coal ash decreases the pyrolysis activation energy, while biomass ash and mudstone both increases the pyrolysis activation energy respectively.

关键词

生物质 / 烘焙 / 催化剂 / 热解 / 动力学

Key words

biomass / torrefaction / catalyst / pyrolysis / kinetics

引用本文

导出引用
梅艳阳, 侯靖凡, 李文琪, 陈莹, 郑炎鑫, 侯原浩. 催化剂与烘焙耦合对榆木热解特性的影响[J]. 太阳能学报. 2025, 46(4): 628-635 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2106
Mei Yanyang, Hou Jingfan, Li Wenqi, Chen Ying, Zheng Yanxin, Hou Yuanhao. EFFECT OF CATALYST AND TORREFACTION COUPLING ON PYROLYSIS CHARACTERISTICS OF ELM[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 628-635 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2106
中图分类号: TK6   

参考文献

[1] 王士铎, 张晓东, 杨双霞, 等. 焙烧温度对球状Ni-Al纳米催化剂结构及生物质催化热解的影响研究[J]. 太阳能学报, 2022, 43(9): 376-381.
WANG S D, ZHANG X D, YANG S X, et al.Effect of calcination temperatures on structure and biomass catalytic pyrolysis of sphere-like Ni-Al nanocatalysts[J]. Acta energiae solaris sinica, 2022, 43(9): 376-381.
[2] 李延吉, 伊嘉婧, 何强, 等. 碱改性HZSM-5热解生物质模型化合物影响研究[J]. 太阳能学报, 2022, 43(5): 383-390.
LI Y J, YI J J, HE Q, et al.Effect of alkali-modified HZSM-5 modified on catalytic pyrolysis of biomass model compounds[J]. Acta energiae solaris sinica, 2022, 43(5): 383-390.
[3] KUNG C C, FEI C J, MCCARL B A, et al.A review of biopower and mitigation potential of competing pyrolysis methods[J]. Renewable and sustainable energy reviews, 2022, 162: 112443.
[4] LAHIJANI P, MOHAMMADI M, MOHAMED A R, et al.Upgrading biomass-derived pyrolysis bio-oil to bio-jet fuel through catalytic cracking and hydrodeoxygenation: a review of recent progress[J]. Energy conversion and management, 2022, 268: 115956.
[5] ZHU X F, LUO Z J, ZHU X F.Novel insights into the enrichment of phenols from walnut shell pyrolysis loop: torrefaction coupled fractional condensation[J]. Waste management, 2021, 131: 462-470.
[6] LY H V, KWON B, KIM J, et al.Effects of torrefaction on product distribution and quality of bio-oil from food waste pyrolysis in N2 and CO2[J]. Waste management, 2022, 141: 16-26.
[7] 曲磊, 聂士伟, 胡国荣, 等. 烘焙方式对生物质燃料特性的影响[J]. 太阳能学报, 2020, 41(8): 364-369.
QU L, NIE S W, HU G R, et al.Effects of torrefaction method on biomass fuel properties[J]. Acta energiae solaris sinica, 2020, 41(8): 364-369.
[8] CHEN D Y, ZHENG Z C, FU K X, et al.Torrefaction of biomass stalk and its effect on the yield and quality of pyrolysis products[J]. Fuel, 2015, 159: 27-32.
[9] RUDDY D A, SCHAIDLE J A, FERRELL III J R, et al. Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds[J]. Green chemistry, 2014, 16(2): 454-490.
[10] RAHMAN M M, CHAI M Y, SARKER M, et al.Catalytic pyrolysis of pinewood over ZSM-5 and CaO for aromatic hydrocarbon: analytical py-GC/MS study[J]. Journal of the energy institute, 2020, 93(1): 425-435.
[11] LU Q X, YUAN S F, LIU C X, et al.A Fe-Ca/SiO2 catalyst for efficient production of light aromatics from catalytic pyrolysis of biomass[J]. Fuel, 2020, 279: 118500.
[12] BHOI P R, OUEDRAOGO A S, SOLOIU V, et al.Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis[J]. Renewable and sustainable energy reviews, 2020, 121: 109676.
[13] LIU Q, WANG J Z, ZHOU J, et al.Promotion of monocyclic aromatics by catalytic fast pyrolysis of biomass with modified HZSM-5[J]. Journal of analytical and applied pyrolysis, 2021, 153: 104964.
[14] GRAMS J, RUPPERT A M.Catalyst stability: bottleneck of efficient catalytic pyrolysis[J]. Catalysts, 2021, 11(2): 265.
[15] HUSSAIN M, DENDENA TUF L, YUSUP S, et al.Characterization of coal bottom ash & its potential to be used as catalyst in biomass gasification[J]. Materials today: proceedings, 2019, 16: 1886-1893.
[16] LOY A C M, YUSUP S, LAM M K, et al. The effect of industrial waste coal bottom ash as catalyst in catalytic pyrolysis of rice husk for syngas production[J]. Energy conversion and management, 2018, 165: 541-554.
[17] VASSILEV S V, BAXTER D, ANDERSEN L K, et al.An overview of the composition and application of biomass ash. Part 1. phase-mineral and chemical composition and classification[J]. Fuel, 2013, 105: 40-76.
[18] VASSILEV S V, BAXTER D, ANDERSEN L K, et al.An overview of the composition and application of biomass ash. Part 2. potential utilisation, technological and ecological advantages and challenges[J]. Fuel, 2013, 105: 19-39.
[19] 梅艳阳, 李文琪, 庞树声, 等. 生物质水蒸气氛围烘焙对后续热解影响[J]. 农业工程学报, 2022, 38(12): 253-259.
MEI Y Y, LI W Q, PANG S S, et al.Effects of steam in the heating medium on biomass torrefaction and subsequent pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(12): 253-259.
[20] LIN X N, KONG L S, CAI H Z, et al.Effects of alkali and alkaline earth metals on the co-pyrolysis of cellulose and high density polyethylene using TGA and Py-GC/MS[J]. Fuel processing technology, 2019, 191: 71-78.
[21] WANG J F, MA M, BAI Y H, et al.Effect of CaO additive on co-pyrolysis behavior of bituminous coal and cow dung[J]. Fuel, 2020, 265: 116911.
[22] CHEN Q, ZHOU J S, LIU B J, et al.Influence of torrefaction pretreatment on biomass gasification technology[J]. Chinese science bulletin, 2011, 56(14): 1449-1456.
[23] CHEN D Y, ZHENG Z C, FU K X, et al.Torrefaction of biomass stalk and its effect on the yield and quality of pyrolysis products[J]. Fuel, 2015, 159: 27-32.
[24] CHEN X, CHEN Y Q, YANG H P, et al.Catalytic fast pyrolysis of biomass: selective deoxygenation to balance the quality and yield of bio-oil[J]. Bioresource technology, 2019, 273: 153-158.
[25] YANG H P, YAN R, CHEN H P, et al.In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin[J]. Energy & fuels, 2006, 20(1): 388-393.
[26] ZHANG C T, HU X, GUO H Y, et al.Pyrolysis of poplar, cellulose and lignin: effects of acidity and alkalinity of the metal oxide catalysts[J]. Journal of analytical and applied pyrolysis, 2018, 134: 590-605.
[27] YANG J K, XU X Y, LIANG S, et al.Enhanced hydrogen production in catalytic pyrolysis of sewage sludge by red mud: thermogravimetric kinetic analysis and pyrolysis characteristics[J]. International journal of hydrogen energy, 2018, 43(16): 7795-7807.
[28] CHEN G, ANDRIES J, SPLIETHOFF H.Catalytic pyrolysis of biomass for hydrogen rich fuel gas production[J]. Energy conversion and management, 2003, 44(14): 2289-2296.
[29] 郑志锋, 郑云武, 黄元波, 等. 木质生物质催化热解制备富烃生物油研究进展[J]. 林业工程学报, 2019, 4(2): 1-12.
ZHENG Z F, ZHENG Y W, HUANG Y B, et al.Recent research progress on production of hydrocarbon-rich bio-oil through catalytic pyrolysis of lignocellulosic biomass[J]. Journal of forestry engineering, 2019, 4(2): 1-12.
[30] WENG J J, CHENG Z J, ZHANG Y, et al.Online evaluation of catalytic co-pyrolysis of hemicellulose and polypropylene over CaO catalyst[J]. Fuel, 2023, 332: 125993.
[31] ZHAO S L, LIU M, ZHAO L, et al.Influence of interactions among three biomass components on the pyrolysis behavior[J]. Industrial & engineering chemistry research, 2018, 57(15): 5241-5249.
[32] USINO D O, SUPRIYANTO, YLITERVO P, et al.Influence of temperature and time on initial pyrolysis of cellulose and xylan[J]. Journal of analytical and applied pyrolysis, 2020, 147: 104782.
[33] SAHOO A, KUMAR S, KUMAR J, et al.A detailed assessment of pyrolysis kinetics of invasive lignocellulosic biomasses (Prosopis juliflora and Lantana camara) by thermogravimetric analysis[J]. Bioresource technology, 2021, 319: 124060.
[34] ANSARI K, ARORA J S, CHEW J W, et al.Fast pyrolysis of cellulose, hemicellulose, and lignin: effect of operating temperature on bio-oil yield and composition and insights into the intrinsic pyrolysis chemistry[J]. Industrial & engineering chemistry research, 2019, 58(35): 15838-15852.
[35] 刘君. CaO催化下荆条热解特性[D]. 吉林: 东北电力大学, 2021.
LIU J.Pyrolysis characteristics of vitex catalyzed by CaO[D]. Jilin: Northeast Electric Power University, 2021.
[36] WENG J J, CUI C H, ZHOU Z Y, et al.Online investigation on catalytic co-pyrolysis of cellulose and polyethylene over magnesium oxide by advanced mass spectrometry[J]. Bioresource technology, 2021, 338: 125560.
[37] CZAJKA K, KISIELA A, MOROŃ W, et al.Pyrolysis of solid fuels: thermochemical behaviour, kinetics and compensation effect[J]. Fuel processing technology, 2016, 142: 42-53.
[38] GAO P, ZHAO Z H, LIU Y T, et al.Effect of gas-pressurized torrefaction on the upgrading and pyrolysis characteristics of corn stalk[J]. Journal of fuel chemistry and technology, 2022, 50(6): 735-747.
[39] LI J J, DOU B L, ZHANG H, et al.Pyrolysis characteristics and non-isothermal kinetics of waste wood biomass[J]. Energy, 2021, 226: 120358.
[40] IVANOVSKI M, GORICANEC D, KROPE J, et al.Torrefaction pretreatment of lignocellulosic biomass for sustainable solid biofuel production[J]. Energy, 2022, 240: 122483.
[41] REN S J, LEI H W, WANG L, et al.Hydrocarbon and hydrogen-rich syngas production by biomass catalytic pyrolysis and bio-oil upgrading over biochar catalysts[J]. RSC advances, 2014, 4(21): 10731-10737.

基金

国家自然科学基金(52206243); 河南省科技攻关项目(222102320277)

PDF(2201 KB)

Accesses

Citation

Detail

段落导航
相关文章

/