基于多源数据融合的城市屋顶光伏潜力评估

彭曙蓉, 王娜, 李彬, 钟佩军, 苏盛, 蒙文川

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 40-48.

PDF(8385 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(8385 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 40-48. DOI: 10.19912/j.0254-0096.tynxb.2023-2107

基于多源数据融合的城市屋顶光伏潜力评估

  • 彭曙蓉1, 王娜1, 李彬1, 钟佩军1, 苏盛1, 蒙文川2
作者信息 +

ASSESSMENT OF URBAN ROOFTOP PV POTENTIAL BASED ON MUTIL-SOURCE DATA FUSION

  • Peng Shurong1, Wang Na1, Li Bin1, Zhong Peijun1, Su Sheng1, Meng Wenchuang2
Author information +
文章历史 +

摘要

针对现有研究多局限于采用卫星遥感图像或地理信息等单一数据源难以准确反应城市屋顶光伏潜力的问题,考虑阴影效应、地理位置和气象条件等因素的影响,该文提出一种基于多源信息融合的城市屋顶光伏提升方法,所提方法主要包括屋顶信息提取、区域建筑阴影计算和光伏发电潜力计算3个环节,在各环节的分析中引入大量卫星遥感图像、地理信息数据、气象等数据,极大提升了城市光伏潜力评估的准确性。最后以长沙市为例进行方法的应用,评估结果表明长沙市城市屋顶光伏的发电潜力为14480.4 GWh,具备较大的开发潜力。

Abstract

Accurate assessment of urban rooftop PV development potential is one of the key problems to be solved for urban rooftop PV construction. Most of the existing studies are limited to the assessment of urban rooftop PV potential by a single data source, such as satellite remote sensing images or geographic information, which is difficult to accurately respond to the urban rooftop PV potential under the influence of multiple factors. Considering the shadow effect, geographic location and meteorological conditions, this paper proposes an urban rooftop PV enhancement method based on the fusion of multi-source information, which mainly includes three links: roof information extraction, regional building shadow calculation and PV power generation potential calculation, and a large amount of satellite remote sensing imagery, geographic information data, meteorological data and other data are introduced into the analyses of the links, which greatly enhance the accuracy of the assessment of the urban photovoltaic potential. The accuracy of urban PV potential assessment is greatly improved. Finally, the method is applied to Changsha City as an example, and the evaluation results show that the power generation potential of urban rooftop photovoltaic in Changsha City is 14480.4 GWh, which is a large potential for development.

关键词

分布式光伏 / 深度学习 / 地理信息系统 / 卫星遥感图像 / 多源信息融合

Key words

distributed photovoltaic / deep learning / geographic information systems (GIS) / satellite remote sensing imagery / multi-source information fusion

引用本文

导出引用
彭曙蓉, 王娜, 李彬, 钟佩军, 苏盛, 蒙文川. 基于多源数据融合的城市屋顶光伏潜力评估[J]. 太阳能学报. 2024, 45(12): 40-48 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2107
Peng Shurong, Wang Na, Li Bin, Zhong Peijun, Su Sheng, Meng Wenchuang. ASSESSMENT OF URBAN ROOFTOP PV POTENTIAL BASED ON MUTIL-SOURCE DATA FUSION[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 40-48 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2107
中图分类号: TM615   

参考文献

[1] Net Zero Scorecard.Data Explorer [EB/OL]. [2022-12-25].https://eciu.net/netzerotracker
[2] 黄震, 谢晓敏. 碳中和愿景下的能源变革[J]. 中国科学院院刊, 2021, 36(9): 1010-1018.
HUANG Z,XIE X M.Energy revolution under vision of carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(9): 1010-1018.
[3] 魏文栋. 能源革命:实现碳达峰和碳中和的必由之路[J]. 探索与争鸣, 2021(9): 23-25.
WEI W D.Energy revolution: The only way to achieve emission peak and carbon neutrality[J]. Exploration and free views, 2021(9): 23-25.
[4] 王志军, 刘明波, 谢敏. 含高光伏渗透配电网最优潮流的分散式鞍点动态求解[J]. 中国电机工程学报, 2019, 39(2): 459-468, 643.
WANG Z J, LIU M B, XIE M.Decentralized saddle-point dynamics solution for optimal power flow of distribution networks with high photovoltaic penetration[J]. Proceedings of the CSEE, 2019, 39(2): 459-468, 643.
[5] 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 1-14.
DING M, WANG W S, WANG X L, et al.A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE, 2014, 34(1): 1-14.
[6] 杨春. 基于熵权TOPSIS模型的风电光伏发展潜力评估[J].太阳能学报, 2022, 43(12):70-78.
YANG C.Comprehensive evaluation of wind power and photovoltaic development potential based on entropy weight TOPSIS model[J]. Acta energiae solaris sinica, 2022, 43(12): 70-78.
[7] MOHAJERI N, ASSOULINE D, GUDMUNDSSON A, et al.Effects of city size on the large-scale decentralised solar energy potential[J]. Energy procedia, 2017, 122: 697-702.
[8] WIGINTON L K, NGUYEN H T, PEARCE J M.Quantifying rooftop solar photovoltaic potential for regional renewable energy policy[J]. Computer environment and urban system, 2010, 34: 345-57.
[9] DEFAIX P, VAN S, WORRELL E, et al.Technical potential for photovoltaics on buildings in the EU-27[J]. Solar energy, 2012, 86(9): 2644-2653
[10] IZQUIERDO S, RODRIGUES M, FUEYO N.A Method for estimating the geographical distribution of the available roof surface area for large-scale PV energy-potential evaluations[J]. Solar energy, 2008, 82(10): 929-939
[11] SINGH R, BANERJEE R.Estimation of rooftop solar photovoltaic potential of a city[J]. Solar energy, 2015, 115: 589-602.
[12] 徐孝彬, 张好杰, 白建波, 等. 基于改进Unet的分布式光伏建筑物高精度分割方法[J]. 太阳能学报, 2023, 44(11): 82-90.
XU X B, ZHANG H J, BAI J B, et al.High-precision segmentation method of distributed photovoltaic buildings based on improved Unet[J]. Acta energiae solaris sinica, 2023, 44(11): 82-90.
[13] HUANG Z, MENDIS T, XU S.Urban solar utilization potential mapping via deep learning technology: A case study of Wuhan, China[J]. Applied energy, 2019, 250: 283-291.
[14] ZHONG T, ZHANG Z, CHEN M, et al.A city-scale estimation of rooftop solar photovoltaic potential based on deep learning[J]. Applied energy, 2021, 298: 117132.
[15] XU S, LI Z, ZHANG C, et al.A method of calculating urban-scale solar potential by evaluating and quantifying the relationship between urban block typology and occlusion coefficient: a case study of Wuhan in central China[J]. Sustainable cities and society, 2021, 64: 102451.
[16] RODRIGUEZ L R, DUMINIL E, RAMOS J S, et al.Assessment of the photovoltaic potential at urban level based on 3D city models: a case study and new methodological approach[J]. Solar energy, 146: 264-275.
[17] HONG T, LEE M, KOO C, et al.Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis[J]. Applied energy, 2017, 194: 320-332.
[18] KO L, WANG J C, CHEN C Y, et al.Evaluation of the development potential of rooftop solar photovoltaic in Taiwan[J]. Renewable energy, 2015, 76: 582-595.
[19] CHEN L C, ZHU Y K, PAPANDREOU G, et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany: Springer, 2018: 833-851.
[20] BURROUGH P A, MCDONNELL R A, LLOYD C D.Principles of geographical information systems[M]. New York Oxford University Press, 1998.
[21] 祝青, 张兴, 李善寿, 等.一种基于功率闭环的动态多峰值最大功率点跟踪算法研究与测试[J].中国电机工程学报, 2016, 36(5): 1218-1227.
ZHU Q, ZHANG X, LI S S, et al Researches and tests of a dynamic multi-peak maximum power point tracking algorithm based on power loop[J]. Proceedings of the CSEE, 2016, 36(5): 1218-1227.
[22] 孙韵琳, 杜晓荣, 王小杨, 等. 固定式并网光伏阵列的辐射量计算与倾角优化[J]. 太阳能学报, 2009, 30(12): 1597-1601.
SUN Y L, DU X R, WANG X Y, et al.Calculation of solar radiation and optimum tilted angle of fixed grid connected solar PV array[J]. Acta energiae solaris sinica, 2009, 30(12): 1597-1601.
[23] YOSHIDA S, UENO S, KATAOKA N, et al.Estimation of global tilted irradiance and output energy using meteorological data and performance of photovoltaic modules[J]. Solar energy, 2013, 93: 90-99.
[24] HUANG S, RICH P M, CRABTREE R L, et al.Modeling monthly near-surface air temperature from solar radiation and lapse rate: application over complex terrain in Yellowstone National Park[J]. Physical geography, 2008, 29(2): 158-178.
[25] 方芳, 吴开顺, 郑道远, 等. 中国典型城市建筑物实例数据集[J]. Science data bank, 2021, 6(1): 182-190.
FANG F, WU K S, ZHENG D Y, et al.A dataset of typical urban buildings in China[J]. Science data bank, 2021, 6(1): 182-190.
[26] MAO H, CHEN X, LUO Y, et al.Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images[J]. Renewable and sustainable energy reviews, 2023, 179: 113276.

基金

国家自然科学基金(52177069); 广西电网公司科技项目(GXKJXM20222144); 南方电网公司科技项目(0000002022030201JH00014)

PDF(8385 KB)

Accesses

Citation

Detail

段落导航
相关文章

/