拉伸及弯曲载荷作用下风电叶片主梁面外褶皱缺陷的失效预测研究

郭志辉, 李慧, 王珑, 周勃, 辛雯

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 586-594.

PDF(3446 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3446 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 586-594. DOI: 10.19912/j.0254-0096.tynxb.2023-2110

拉伸及弯曲载荷作用下风电叶片主梁面外褶皱缺陷的失效预测研究

  • 郭志辉1, 李慧1, 王珑2, 周勃1, 辛雯3
作者信息 +

FAILURE PREDICTION OF OUT-OF-PLANE WRINKLE ON TENSILE AND FLEXURAL PROPERTIES OF WIND TURBINE BLADE SPAR CAP

  • Guo Zhihui1, Li Hui1, Wang Long2, Zhou Bo1, Xin Wen3
Author information +
文章历史 +

摘要

叶片主梁褶皱严重危及风力机运行安全,该文提出一种基于连续损伤力学(CDM)模型来预测含不同高宽比的面外褶皱单向板的失效方法。首先,基于ABAQUS建立5种含不同高宽比的面外褶皱的5层单向板数值分析模型,通过编写USDFLD子程序并采用连续壳单元(SC8R)进行拉伸失效载荷预测和渐进损伤失效历程研究,并与试验对比,验证该文分析方法的精准性。进一步,基于AeroDyn 2 MW-45.3 m叶片主梁厚度分布,建立3种含不同高宽比的面外褶皱的15层大厚度单向板的数值分析模型,为了探究剪切效应对层合板性能的影响,编写VUMAT子程序并采用三维Hashin准则分别预测拉伸载荷和弯曲载荷作用下,褶皱对主梁单向板抗拉与抗弯性能的影响规律。研究结果表明:褶皱的高宽比对单向板承载能力影响较大,随着褶皱高宽比增大,叶片主梁的抗拉和抗弯性能逐渐降低,并受单向板厚度方向应变ε33和面外应变ε13的耦合作用影响,在高应变区域出现分层,显著降低单向板的刚度和强度。

Abstract

In this paper, a method based on the continuous damage mechanics (CDM) model is proposed for predicting the failure of unidirectional laminates with out-of-plane wrinkles and varying aspect ratios. Initially, a numerical analysis model was established using ABAQUS to investigate five 5-layer laminates with different aspect ratios of out-of-plane wrinkles. The prediction of tensile failure load and progressive damage history were performed by programming the USDFLD subroutine and utilizing the continuous shell element (SC8R). The accuracy of the proposed analysis method was validated through comparison with experimental results. Furthermore, a numerical analysis model was developed for fifteen layers of large-thickness unidirectional laminate with three types of out-of-plane wrinkles and various aspect ratios based on the thickness distribution of Aerodyn 2 MW-45.3 m blade spar cap. To examine the influence of shear effect on laminate performance, a VUMAT subroutine was implemented to predict the impact of wrinkles on tensile and bending properties using the 3D Hashin criterion. The results indicate that wrinkle aspect ratio significantly affects the bearing capacity of spar caps, as both tensile and flexural properties gradually decrease with increasing wrinkle aspect ratio for spar caps. Additionally, due to coupling effects between strain ε33 in thickness direction and out-of-plane strain ε13, stratification occurs in high-strain areas leading to significant reductions in stiffness and strength.

关键词

风电叶片 / 褶皱 / 数值分析 / 刚度退化模型 / 失效预测

Key words

wind turbine blade / wrinkle / numerical analysis / stiffness degradation model / failure prediction

引用本文

导出引用
郭志辉, 李慧, 王珑, 周勃, 辛雯. 拉伸及弯曲载荷作用下风电叶片主梁面外褶皱缺陷的失效预测研究[J]. 太阳能学报. 2024, 45(9): 586-594 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2110
Guo Zhihui, Li Hui, Wang Long, Zhou Bo, Xin Wen. FAILURE PREDICTION OF OUT-OF-PLANE WRINKLE ON TENSILE AND FLEXURAL PROPERTIES OF WIND TURBINE BLADE SPAR CAP[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 586-594 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2110
中图分类号: TB332   

参考文献

[1] 陈庭记, 桂帆, 郭政, 等. 基于不同运行状态的风电机组齿轮箱故障率预测模型[J]. 太阳能学报, 2023, 44(4): 45-51.
CHEN T J, GUI F, GUO Z, et al.Fault rate prediction model of wind turbines'gearbox under different operation status[J]. Acta energiae solaris sinica, 2023, 44(4): 45-51.
[2] 石腾, 许波峰, 李振, 等. 基于数字图像处理的风电机组叶片裂纹损伤识别方法研究[J]. 太阳能学报, 2024, 45(2): 86-94.
SHI T, XU B F, LI Z, et al.Research on crack damage identification method of wind turbine blades based on digital image processing[J]. Acta energiae solaris sinica, 2024, 45(2): 86-94.
[3] JANG Y J, KIM H J, KIM H G, et al.Identification of debonding damage at spar cap-shear web joints by artificial neural network using natural frequency relevant key features of composite wind turbine blades[J]. Applied sciences, 2021, 11(12): 5327.
[4] WANG W J, XUE Y, HE C K, et al.Review of the typical damage and damage-detection methods of large wind turbine blades[J]. Energies, 2022, 15(15): 5672.
[5] XIN W, LI H, LU X L, et al.Study on the effect of initial delamination on tensile behavior of offshore wind turbine blade spar cap[J]. Energies, 2023, 16(8): 3607.
[6] FARNAND K, ZOBEIRY N, POURSARTIP A, et al.Micro-level mechanisms of fiber waviness and wrinkling during hot drape forming of unidirectional prepreg composites[J]. Composites part A: applied science and manufacturing, 2017, 103: 168-177.
[7] 康爽, 陈长征, 周勃, 等. 基于温度阈值风电叶片缺陷识别的红外检测研究[J]. 太阳能学报, 2020, 41(8): 337-341.
KANG S, CHEN C Z, ZHOU B, et al.Infrared detection research on wind turbine blade defects identification based on temperature threshold[J]. Acta energiae solaris sinica, 2020, 41(8): 337-341.
[8] 杨喜, 李书欣, 王继辉, 等. 一种实时监测环氧树脂固化过程中化学收缩的方法[J]. 玻璃钢/复合材料, 2016(1): 74-78.
YANG X, LI S X, WANG J H, et al.A real-time monitoring method for the chemical shrinkage in the curing process of epoxy resin[J]. Fiber reinforced plastics/composites, 2016(1): 74-78.
[9] BENDER J, HALLETT S, LINDGAARD E.Investigation of the effect of wrinkle features on wind turbine blade sub-structure strength[J]. Composite structures, 2019, 218: 39-49.
[10] CHEN X, SEMENOV S, MCGUGAN M, et al.Fatigue testing of a 14.3 m composite blade embedded with artificial defects-damage growth and structural health monitoring[J] . Composites part A: applied science and manufacturing, 2021.
[11] LI H Y, LU X L, XIN W, et al.Repair parameter design of outer reinforcement layers of offshore wind turbine blade spar cap based on structural and aerodynamic analysis[J].Energies, 2023, 16(2) : 712.
[12] OVERGAARD L C T, LUND E, THOMSEN O T. Structural collapse of a wind turbine blade. Part A: static test and equivalent single layered models[J]. Composites part A: applied science and manufacturing, 2010, 41(2): 257-270.
[13] ALTMANN A, TAUBERT R, MANDEL U, et al.A continuum damage model to predict the influence of ply waviness on stiffness and strength in ultra-thick unidirectional fiber-reinforced plastics[J]. Journal of composite materials, 2016, 50(20): 2739-2755.
[14] 张国芳. 风机叶片用玻璃纤维增强复合材料褶皱损伤研究[D]. 包头: 内蒙古科技大学, 2022.
ZHANG G F.Study on wrinkle damage of glass fiber reinforced composite for fan blade[D]. Baotou: Inner Mongolia University of Science & Technology, 2022.
[15] 吴维清, 朱俊, 王继辉, 等. 纤维波纹对复合材料层合板刚度影响研究[J]. 玻璃钢/复合材料, 2015(12): 41-47.
WU W Q, ZHU J, WANG J H, et al.Effects of fiber waviness on the stiffness of composite laminates[J]. Fiber reinforced plastics/composites, 2015(12): 41-47.
[16] BENDER J, HALLETT S, LINDGAARD E.Parametric study of the effect of wrinkle features on the strength of a tapered wind turbine blade sub-structure[J]. Composite structures, 2019, 218: 120-129.
[17] NELSON J W, RIDDLE T W, CAIRNS D S.Effects of defects in composite wind turbine blades: part 1: characterization and mechanical testing[J]. Wind energy science, 2017, 2(2): 641-652.
[18] HASIO H M, DANIEL I M.Elastic properties of composites with fiber waviness[J]. Composites part A: Applied science and manufacturing, 1996, 27(10): 931-941.
[19] HSIAO H M, DANIEL I M.Effect of fiber waviness on stiffness and strength reduction of unidirectional composites under compressive loading[J]. Composites science and technology, 1996, 56(5): 581-593.
[20] 陆媚, 胡祎乐, 余音. 复合材料双波纹面外褶皱缺陷细观力学分析方法[J]. 复合材料学报, 2023, 40(2): 1129-1141.
LU M, HU Y L, YU Y.Micro-mechanics analytical method for composite out-of-plane wrinkle with double fiber-waviness[J]. Acta materiae compositae sinica, 2023, 40(2): 1129-1141.
[21] MICHAEL T, SAUSE MARKUS G R, HINTERHÖLZL ROLAND M. Mechanisms of origin and classification of out-of-plane fiber waviness in composite materials: a review[J]. Journal of composites science, 2020, 4(3): 130.
[22] NARAYANAN S.Effect of in-plane fiber waviness on the failure of fiber reinforced polymer composites[D]. Singapore:Nanyang Technological University, 2018.
[23] THOR M, MANDEL U, NAGLER M, et al.Numerical and experimental investigation of out-of-plane fiber waviness on the mechanical properties of composite materials[J]. International journal of material forming, 2021, 14(1): 19-37.
[24] MUKHOPADHYAY S, JONES M I, HALLETT S R.Tensile failure of laminates containing an embedded wrinkle; numerical and experimental study[J]. Composites part A: applied science and manufacturing, 2015, 77: 219-228.
[25] 赵春妮, 刘清, 陈文光, 等. 不同尺寸褶皱对风电叶片主梁性能的影响研究[J]. 风能, 2020(5): 90-93.
ZHAO C N, LIU Q, CHEN W G, et al.Study on the influence of folds with different sizes on the performance of main girder of wind turbine blades[J]. Wind energy, 2020(5): 90-93.
[26] 傅程, 刘莉, 邢海瑞. 海上风电叶片褶皱特征分析[J]. 船舶工程, 2023, 45(增刊1): 32-36.
FU C, LIU L, XING H R.Analysis of folding characteristics of offshore wind turbine blades[J]. Ship engineering, 2023, 45(S1): 32-36.
[27] ROZYLO P.Experimental-numerical study into the stability and failure of compressed thin-walled composite profiles using progressive failure analysis and cohesive zone model[J]. Composite structures, 2021, 257: 113303.
[28] 沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006.
SHEN G L, HU G K.Mechanics of composite materials[M]. Beijing: Tsinghua University Press, 2006.
[29] HASHIN Z.Failure criteria for unidirectional fiber composites[J]. Journal of applied mechanics, 1980, 47(2): 329-334.
[30] 李响, 贾欲明, 洪润民. Hashin准则的应力应变形式在复合材料渐进损伤计算中的对比[J]. 机械工程学报, 2022, 58(22): 284-293.
LI X, JIA Y M, HONG R M.Comparison between the stress form and strain form of Hashin criteria in progressive failure analysis of composite materials[J]. Journal of mechanical engineering, 2022, 58(22): 284-293.
[31] CAMANHO P P, MATTHEWS F L.A progressive damage model for mechanically fastened joints in composite laminates[J]. Journal of composite materials, 1999, 33(24): 2248-2280.
[32] 钱若力, 穆晓光, 王轩, 等. 含褶皱缺陷玻璃纤维增强复合材料层合板拉伸渐进失效分析[J]. 复合材料科学与工程, 2020(7): 13-19, 52.
QIAN R L, MU X G, WANG X, et al.Progressive failure analysis of tensile strength of glass fiber reinforced composite laminates with wrinkle defects[J]. Composites science and engineering, 2020(7): 13-19, 52.

基金

国家自然科学基金(52306264); 辽宁省联合基金及教育厅科研项目(2023MSLH252; LJKMZ20220486; JYTQN2023446)

PDF(3446 KB)

Accesses

Citation

Detail

段落导航
相关文章

/