针对海上风力机基础小概率失效事件的可靠性分析,提出一种基于PC-Kriging模型和主动学习的小失效概率的结构可靠性算法。该算法利用子集模拟法SS将小失效概率事件划分为若干中间事件,并通过主动学习提高代理模型对每个中间事件的拟合精度,以此来提高对中间事件的失效概率求解精度,并通过数学算例验证该方法的可行性与高效性。最后结合导管架式海上风力机基础的有限元分析,利用该算法开展导管架式海上风力机基础的结构强度可靠性分析,计算所得失效概率为7.6416×10-8,符合规范要求,并进行全局灵敏度分析,确定桩腿壁厚为影响风力机基础可靠性的主要因素。
Abstract
A structural reliability algorithm for small failure probability based on PC-Kriging model and active learning is proposed for reliability analysis of small probability failure events of offshore wind turbine foundation. The algorithm utilizes Subset Simulation (SS) to divide the small failure probability events into several intermediate events, and improves the fitting accuracy of the agent model for each intermediate event through active learning, so as to improve the accuracy of the failure probability solution for the intermediate events, and verifies the feasibility and high efficiency of the method through mathematical examples. Finally, the algorithm is used to carry out the structural strength reliability analysis of the conduit frame offshore wind turbine foundation in combination with the finite element analysis of the conduit frame offshore wind turbine foundation, and the calculated probability of failure is 7.6416×10-8, which is in line with the specification requirements, and a global sensitivity analysis is carried out, which determines that the wall thickness of the pile leg is the main factor influencing the reliability of the wind turbine foundation.
关键词
可靠性分析 /
Kriging /
主动学习 /
导管架基础 /
小失效概率
Key words
reliability analysis /
Kriging /
active learning /
jacket type offshore wind turbine foundation /
small failure probabilit
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 葛新宇, 毕俊喜, 李海滨, 等. 基于故障物理的风力机叶片可靠性仿真分析方法[J]. 太阳能学报, 2024, 45(3): 29-40.
GE X Y, BI J X, LI H B, et al.Reliability simulation analysis method of wind turbine blades based on fault physics[J]. Acta energiae solaris sinica, 2024, 45(3): 29-40.
[2] GUO H Y, JIANG C, GU X L, et al.Time-dependent reliability analysis of reinforced concrete beams considering marine environmental actions[J]. Engineering structures, 2023, 288: 116252.
[3] AGHATISE O, KHAN F, AHMED S.Reliability assessment of marine structures considering multidimensional dependency of the variables[J]. Ocean engineering, 2021, 230: 109021.
[4] 周通, 彭勇波, 李杰. 结构可靠度分析的概率密度演化理论: 自适应代理模型方法[J]. 振动工程学报, 2020, 33(5): 1035-1043.
ZHOU T, PENG Y B, LI J.Structural reliability analysis using probability density evolution method and adaptive surrogate model[J]. Journal of vibration engineering, 2020, 33(5): 1035-1043.
[5] 于震梁, 孙志礼, 张毅博, 等. 一种自适应PC-Kriging模型的结构可靠性分析方法[J]. 东北大学学报(自然科学版), 2020, 41(5): 667-672.
YU Z L, SUN Z L, ZHANG Y B, et al.A structural reliability analysis method based on adaptive PC-Kriging model[J]. Journal of Northeastern University (natural science), 2020, 41(5): 667-672.
[6] 洪林雄, 李华聪, 彭凯, 等. 基于改进学习策略的Kriging模型结构可靠度算法[J]. 西北工业大学学报, 2020, 38(2): 412-419.
HONG L X, LI H C, PENG K, et al.Structural reliability algorithms of Kriging model based on improved learning strategy[J]. Journal of Northwestern Polytechnical University, 2020, 38(2): 412-419.
[7] AU S K, BECK J L.Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic engineering mechanics, 2001, 16(4): 263-277.
[8] 周成宁, 张培培, 张冕, 等. 一种Kriging模型和改进子集模拟的多响应系统可靠性分析方法研究[J]. 机械科学与技术, 2020, 39(2): 309-314.
ZHOU C N, ZHANG P P, ZHANG M, et al.Analyzing structural reliability of multi-response system based on Kriging model and generalized subset simulation[J]. Mechanical science and technology for aerospace engineering, 2020, 39(2): 309-314.
[9] 周成宁. 随机和认知不确定性下基于代理模型的结构可靠性方法研究[D]. 成都: 电子科技大学, 2021.
ZHOU C N.A research of surrogate-based model for structural reliability method under aleatory and epistemic uncertainties[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
[10] YAO Q, ZHANG M C, JIANG Q S, et al.Uncertainty analysis and reliability improvement of planetary roller screw mechanism using active learning Kriging model[J]. Probabilistic engineering mechanics, 2023, 72: 103436.
[11] OKORO A, KHAN F, AHMED S.An Active Learning Polynomial Chaos Kriging metamodel for reliability assessment of marine structures[J]. Ocean engineering, 2021, 235: 109399.
[12] 刘建秀. 风浪流共同作用下海上风电基础动力响应与承载性能分析[D]. 北京: 北京工业大学, 2018.
LIU J X.Dynamic response analysis and bearing performanceon of offshore wind power foundation under the combined wind wave and current loadings[D]. Beijing: Beijing University of Technology, 2018.
[13] JONES D R, SCHONLAU M, WELCH W J.Efficient global optimization of expensive black-box functions[J]. Journal of global optimization, 1998, 13(4): 455-492.
[14] 钱华明, 黄土地, 黄洪钟, 等. 小失效概率和多失效模式相关的结构可靠性分析方法[J]. 中国科学: 物理学力学天文学, 2022, 52(2): 58-68.
QIAN H M, HUANG T D, HUANG H Z, et al.Structural reliability analysis for a small failure probability problem under multiple failure modes[J]. Scientia sinica (physica, mechanica & astronomica), 2022, 52(2): 58-68.
[15] QUILLIGAN A, O’CONNOR A, PAKRASHI V. Fragility analysis of steel and concrete wind turbine towers[J]. Engineering structures, 2012, 36: 270-282.
[16] 鞠浩, 王旭东, 陆佳红. 神经网络正逆预测结合的风力机叶片强度可靠性研究[J]. 太阳能学报, 2024, 45(1): 291-298.
JU H, WANG X D, LU J H.Reliability study of wind turbine blade strength by combining forward and inverse prediction of neural network[J]. Acta energiae solaris sinica, 2024, 45(1): 291-298.
[17] BORGONOVO E.A new uncertainty importance measure[J]. Reliability engineering & system safety, 2007, 92(6): 771-784.
[18] 黄晓宇, 王攀, 李海和, 等. 具有模糊失效状态的涡轮盘疲劳可靠性及灵敏度分析[J]. 西北工业大学学报, 2021, 39(6): 1312-1319.
HUANG X Y, WANG P, LI H H, et al.Fatigue reliability and sensitivity analysis of turbine disk with fuzzy failure status[J]. Journal of Northwestern Polytechnical University, 2021, 39(6): 1312-1319.
[19] 刘晓静. 基于蒙特卡洛方法的可靠性灵敏度分析[J]. 机械管理开发, 2021, 36(11): 53-55.
LIU X J.Reliability sensitivity analysis based on Monte Carlo method[J]. Mechanical management and development, 2021, 36(11): 53-55.
[20] 李志川, 祁雷, 刘小燕, 等. 基于PC-Kriging模型的极端环境下海上风机基础可靠性分析[J]. 船海工程, 2024, 53(3): 84-89.
LI Z C, QI L, LIU X Y, et al.Reliability analysis of offshore wind turbine foundation environments based on PC-Kriging model[J]. Ship & ocean engineering, 2024, 53(3): 84-89.
基金
国家重点研发计划(2022YFC2806300); 国家自然科学基金(51109158); 中海油能源发展股份有限公司科技重大专项课题(HFZDZX-JN2021-01-04)