夏热冬冷地区电致变色窗档位透过率优化研究

董婷贤, 谭羽桐, 彭晋卿, 罗伊默

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 371-380.

PDF(3395 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3395 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 371-380. DOI: 10.19912/j.0254-0096.tynxb.2023-2114

夏热冬冷地区电致变色窗档位透过率优化研究

  • 董婷贤, 谭羽桐, 彭晋卿, 罗伊默
作者信息 +

TRANSMITTANCE OPTIMIZATION OF STALLS OF ELECTROCHROMIC WINDOWS IN HOT-SUMMER AND COLD-WINTER REGION

  • Dong Tingxian, Tan Yutong, Peng Jinqing, Luo Yimo
Author information +
文章历史 +

摘要

建立电致变色窗建筑采光和能耗模型,采用新采光指标,以综合性能为目标,对电致变色窗在夏热冬冷地区长沙的档位透过率开展优化研究。结果表明:在长沙地区,电致变色窗4个档位的透过率在过渡季和采暖季分别设置为51.40%、18.80%、4.80%和1.00%时综合性能最佳,有效日光照度分别为75.80%和50.91%,单位面积能耗分别为6.70和11.88 kWh/m2。而在制冷季,档位的透过率设置为51.40%、32.60%、23.60%和14.10%时综合性能最佳,有效日光照度为92.28%,单位面积能耗为8.30 kWh/m2。通过以上档位透过率的设置,与普通双层Low-E玻璃相比,电致变色窗的全年有效日光照度增加40.78%,全年不可感知眩光的时长百分比增加59.75%。由于普通双层Low-E 玻璃节能性能较好,且电致变色窗明暗档位太阳得热系数差值较小,年度单位面积总能耗仅减少4.14%。

Abstract

In this study, daylighting and energy consumption models were established for an office building equipped with electrochromic windows. Two new daylighting indices were introduced. With the above model and indices, the study of transmittonce optimization was carried out in Changsha, a region characterized by hot summers and cold winters. The results indicate that during the transitional and heating seasons, the optimal transmittance settings for the four stalls of electrochromic windows are 51.40%, 18.80%, 4.80%, and 1.00% in Changsha, respectirdy. It can achieve the best comprehensive performance with useful daylight illuminance of 75.80% and 50.91%, and energy consumption of 6.70 kWh/m2 and 11.88 kWh/m2 in the transitional and heating seasons respectively. In the cooling season, the optimal transmittance settings are 51.40%, 32.60%, 23.60%, and 14.10%,respectirely, resulting in a useful daylight illuminance of 92.28% and energy consumption of 8.30 kWh/m2. By adopting the above strategy, the annual useful daylight illuminance increased by 40.78%, and the annual percentage of imperceptible glare increases by 59.75%,compared with ordinary double-layer Low-E glass. Due to the good energy-saving performance of ordinary double-layer Low-E windows and the small difference in solar heat gain coefficient between the light and dark state of electrochromic windows, the annual total energy consumption per unit area is only reduced by 4.14% with electrochromic windows.

关键词

办公建筑 / 节能 / 采光 / 电致变色窗 / 综合性能

Key words

office buildings / energy efficiency / daylighting / electrochromic windows / comprehensive performance

引用本文

导出引用
董婷贤, 谭羽桐, 彭晋卿, 罗伊默. 夏热冬冷地区电致变色窗档位透过率优化研究[J]. 太阳能学报. 2025, 46(4): 371-380 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2114
Dong Tingxian, Tan Yutong, Peng Jinqing, Luo Yimo. TRANSMITTANCE OPTIMIZATION OF STALLS OF ELECTROCHROMIC WINDOWS IN HOT-SUMMER AND COLD-WINTER REGION[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 371-380 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2114
中图分类号: TU111.4   

参考文献

[1] 刘全明, 姚涛, 彭罗文. 智能玻璃在建筑门窗幕墙中的应用研究及发展概述[J]. 工程质量, 2015, 33(8): 93-96.
LIU Q M, YAO T, PENG L W.The summary of the application and development of smart glass in building curtain wall[J]. Construction quality, 2015, 33(8): 93-96.
[2] 黄德中, 沈吉宝. 建筑节能技术综述[J]. 太阳能学报, 2007, 28(6): 682-688.
HUANG D Z, SHEN J B.The energy saving of buildings[J]. Acta energiae solaris sinica, 2007, 28(6): 682-688.
[3] 刘玮, 郝雨楠. 智能窗发展现状研究[J]. 门窗, 2017(8): 12-14.
LIU W, HAO Y N.Research on the development status of smart windows[J]. Doors & windows, 2017(8): 12-14.
[4] 孙育英, 戚皓然, 王伟, 等. 电致变色智能窗在北京某办公室应用的节能特性分析[J]. 北京工业大学学报, 2020, 46(4): 385-392.
SUN Y Y, QI H R, WANG W, et al.Energy saving analysis of electrochromic windows in an office in Beijing[J]. Journal of Beijing University of Technology, 2020, 46(4): 385-392.
[5] MOECK M, LEE E S, RUBIN M D, et al.Visual quality assessment of electrochromic and conventional glazings[J]. Solar energy materials and solar cells, 1998, 54(1/2/3/4): 157-164.
[6] LEE E S, DIBARTOLOMEO D L, SELKOWITZ S E.Daylighting control performance of a thin-film ceramic electrochromic window: field study results[J]. Energy and buildings, 2006, 38(1): 30-44.
[7] JAIN S, KARMANN C, WIENOLD J.Behind electrochromic glazing: assessing user’s perception of glare from the Sun in a controlled environment[J]. Energy and buildings, 2022, 256: 111738.
[8] KRARTI M.Optimal optical properties for smart glazed windows applied to residential buildings[J]. Energy, 2023, 278: 128017.
[9] KRARTI M.Design optimization of smart glazing optical properties for office spaces[J]. Applied energy, 2022, 308: 118411.
[10] LANTONIO N A, KRARTI M.Simultaneous design and control optimization of smart glazed windows[J]. Applied energy, 2022, 328: 120239.
[11] TAN Y, PENG J, WANG M, et al.Comfort assessment and energy performance analysis of a novel adjustable semi-transparent photovoltaic window under different rule-based controls[C]. Building Simulation, 2023, 16(12): 2343-2361.
[12] 赵川, 彭晋卿, 李念平, 等. 光伏百叶窗角度控制优化与能效性能模拟研究[J]. 太阳能学报, 2021, 42(1): 43-49.
ZHAO C, PENG J Q, LI N P, et al.Study on angle control optimization and energy performance simulation of photovoltaic blinds[J]. Acta energiae solaris sinica, 2021, 42(1): 43-49.
[13] 王崇敏, 彭晋卿, 罗伊默, 等. 基于分层控制策略采光实验的电致变色窗研究[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(6): 797-803, 788.
WANG C M, PENG J Q, LUO Y M, et al.Study on layered control of electrochromic window based on daylighting experiment[J]. Journal of Xi’an University of Architecture & Technology (natural science edition), 2021, 53(6): 797-803, 788.
[14] 王崇敏. 不同气候区电致变色窗分区控制策略与综合性能研究[D]. 长沙: 湖南大学, 2022.
WANG C M.Study on the control strategy and overall performance of electrochromic windows in different climate zone[D]. Changsha: Hunan University, 2022.
[15] 边宇, 袁磊, 冷天翔. 动态采光指标分析与侧窗采光范围[J]. 哈尔滨工业大学学报, 2017, 49(10): 172-176.
BIAN Y, YUAN L, LENG T X.An analysis of dynamic daylight performance metrics & the daylight availability of side-lit windows[J]. Journal of Harbin Institute of Technology, 2017, 49(10): 172-176.
[16] CARLUCCI S, CAUSONE F, DE ROSA F, et al.A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design[J]. Renewable and sustainable energy reviews, 2015, 47: 1016-1033.
[17] 谭羽桐. 真空光伏窗综合性能研究与优化[D]. 长沙: 湖南大学, 2022.
TAN Y T.Comprehensive performance study and optimization of vacuum photovoltaic glazing[D]. Changsha: Hunan University, 2022.
[18] 高静, 彭晋卿, 王韬宁, 等. 不同电池宽度半透明光伏窗天然采光分析[J]. 太阳能学报, 2022, 43(3): 223-230.
GAO J, PENG J Q, WANG T N, et al.Daylighting analysis of semi-transparent photovoltaic windows with different cell widths[J]. Acta energiae solaris sinica, 2022, 43(3): 223-230.
[19] PIERSON C, CAUWERTS C, BODART M, et al.Tutorial: luminance maps for daylighting studies from high dynamic range photography[J]. Leukos, 2021, 17(2): 140-169.
[20] REINHART C, BRETON P F.Experimental validation of autodesk® 3ds max® design 2009 and DAYSIM 3.0[J]. Leukos, 2009, 6(1): 7-35.
[21] 黄晨昱, 李念平, 阿勇嘎, 等. 太阳辐射对辐射地板供冷性能的影响[J]. 太阳能学报, 2022, 43(9): 169-175.
HUANG C Y, LI N P, A Y G, et al. Influence of solar radiation on cooling performance of radiant floor[J]. Acta energiae solaris sinica, 2022, 43(9): 169-175.
[22] OH M, PARK J, ROH S, et al.Deducing the optimal control method for electrochromic triple glazing through an integrated evaluation of building energy and daylight performance[J]. Energies, 2018, 11(9): 2205.

基金

国家重点研发计划(2023YFC3806205-3)

PDF(3395 KB)

Accesses

Citation

Detail

段落导航
相关文章

/