为确保海洋浮标能够获得稳定且持续的电力供应,提出一种双体波浪能转换装置,其核心结构由两部分组成:一部分是可根据需要调节质心位置的摆体,另一部分是用于漂浮的浮标。依据该装置的设计参数构建相应模型。随后,借助AQWA软件对装置模型进行网格划分操作。在此基础上,对AQWA软件中的频域模型进行网格无关性验证。最终,分别针对单体和双体结构开展频域仿真研究,并对比分析新型双体波浪能发电装置的频域特性。结果表明:摆体的俘能效果在波浪频率为0.2 Hz时最好,而浮标的稳定性在波浪频率为0.33 Hz时最强;双体的水动力参数在某些频率范围内与单体的对应参数有所差别,结合海洋浮标和摆体的新型波浪能发电装置在波浪频率小于0.18 Hz时的俘能效果较强。
Abstract
In order to supply stable and continuous power to ocean buoys,a new two-body wave energy conversion device is proposed. The main body of the device is composed of a buoy and a pendulum with adjustable center of mass position. The model is established according to the design parameters of the new two-body WEC. The device model is meshed using AQWA software. The grid independence test is carried out on the frequency domain model of AQWA. Finally, the frequency domain simulations of the single body and the double body are carried out, respectively. The frequency domain characteristics of the new double-body wave power generation device are compared and studied. The results show that the energy harvesting effect of the pendulum is the best when the wave frequency is 0.2 Hz, and the stability of the buoy is the strongest when the wave frequency is 0.33 Hz. The hydrodynamic parameters of the two-body are different from the corresponding parameters of the single body in some frequency ranges. The new wave energy generation device combined with the ocean buoy and the pendulum has a stronger energy harvesting effect when the wave frequency is less than 0.18 Hz.
关键词
波浪能转换 /
水动力学 /
摆式 /
主动共振 /
AQWA
Key words
wave energy conversion /
hydrodynamics /
pendulum /
active resonance /
AQWA
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘延俊, 武爽, 王登帅, 等. 海洋波浪能发电装置研究进展[J]. 山东大学学报(工学版), 2021, 51(5): 63-75.
LIU Y J, WU S, WANG D S, et al.Research progress of ocean wave energy converters[J]. Journal of Shandong University (engineering science), 2021, 51(5): 63-75.
[2] MORIM J, CARTWRIGHT N, ETEMAD-SHAHIDI A, et al.A review of wave energy estimates for nearshore shelf waters off Australia[J]. International journal of marine energy, 2014, 7: 57-70.
[3] ILLESINGHE S J, MANASSEH R, DARGAVILLE R, et al.Idealized design parameters of wave energy converters in a range of ocean wave climates[J]. International journal of marine energy, 2017, 19: 55-69.
[4] CAI Y Q, HUO Y Q, SHI X Y, et al.Numerical and experimental research on a resonance-based wave energy converter[J]. Energy conversion and management, 2022, 269: 116152.
[5] CAI Y Q, SHI X Y, HUO Y Q, et al.Experimental study on a pitching wave energy converter with adjustable natural period[J]. Ocean engineering, 2022, 261: 112128.
[6] 耿大洲, 陈启卷, 郑阳, 等. 波能转换装置耦合振动非线性水动力特性研究[J]. 振动与冲击, 2023, 42(9): 135-144.
GENG D Z, CHEN Q J, ZHENG Y, et al.Nonlinear hydrodynamic characteristics of coupled vibration of wave energy converter[J]. Journal of vibration and shock, 2023, 42(9): 135-144.
[7] 徐磊, 邓胜忠, 熊必康, 等. 主动共振浮力摆式波浪能发电装置水动力性能研究[J]. 海洋技术学报, 2022, 41(3): 90-96.
XU L, DENG S Z, XIONG B K, et al.Study on hydrodynamic performance of active resonant buoyant pendulum wave energy converter[J]. Journal of ocean technology, 2022, 41(3): 90-96.
[8] WATERS R, STÂLBERG M, DANIELSSON O, et al. Experimental results from sea trials of an offshore wave energy system[J]. Applied physics letters, 2007, 90(3): 034105.
[9] 高功正, 耿大洲, 顾兴远, 等. 漂浮摆式波浪能发电装置的频时域仿真分析[J]. 可再生能源, 2022, 40(3): 421-426.
GAO G Z, GENG D Z, GU X Y, et al.Frequency and time domain simulation analysis of floating-pendulum-type wave energy converter[J]. Renewable energy resources, 2022, 40(3): 421-426.
[10] YUE X H, ZHANG J T, MENG F F, et al.Multi-timescale lookup table based maximum power point tracking of an inverse-pendulum wave energy converter: power assessments and sensitivity study[J]. Energies, 2023, 16: 6195.
[11] 周逸伦, 张亚群, 盛松伟, 等. 振荡水柱式波浪能供电浮标水动力学性能研究[J]. 太阳能学报, 2023, 44(3): 298-303.
ZHOU Y L, ZHANG Y Q, SHENG S W, et al.Study on hydrodynamic performance of oscillating water column wave energy-powered buoy[J]. Acta energiae solaris sinica, 2023, 44(3): 298-303.
[12] 曹雪玲, 高涛, 王文胜, 等. 单浮筒振荡浮子式波浪能装置的动力特性分析[J]. 太阳能学报, 2022, 43(11): 364-368.
CAO X L, GAO T, WANG W S, et al.Analysis of dynamic characteristics of single oscillating-buoy float-type wave energy device[J]. Acta energiae solaris sinica, 2022, 43(11): 364-368.
[13] 张亚群, 盛松伟, 叶寅, 等. 双浮体波浪能浮标水动力学性能试验[J]. 太阳能学报, 2021, 42(6): 29-32.
ZHANG Y Q, SHENG S W, YE Y, et al.Hydrodynamic performance test of double-floating wave power buoy[J]. Acta energiae solaris sinica, 2021, 42(6): 29-32.
[14] FALNES J.Ocean waves and oscillating systems: linear interactions including wave-energy extraction[M]. Cambridge: Cambridge University Press, 2002.