基于信息间隙决策理论的含BSS微电网最优调度策略

王子奇, 侯思祖

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 164-172.

PDF(1351 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1351 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 164-172. DOI: 10.19912/j.0254-0096.tynxb.2023-2128

基于信息间隙决策理论的含BSS微电网最优调度策略

  • 王子奇, 侯思祖
作者信息 +

OPTIMAL SCHEDULING STRATEGY FOR MICROGRIDS WITH BSS BASED ON INFORMATION GAP DECISION THEORY

  • Wang Ziqi, Hou Sizu
Author information +
文章历史 +

摘要

提出一种基于信息间隙决策理论(IGDT)的含换电站(BSS)微电网调度策略。构建BSS和微电网运行模型,采用更贴近工程实际的恒流-恒压方程描述充电过程,并通过分段线性化方法保持模型凸化。在此基础上建立风险规避和风险投机IGDT模型,给出不同风险偏好下的调度策略。仿真结果表明,所提策略可有效处理来自微电网运行中的多重不确定性,规避系统运行风险并降低运行成本。

Abstract

An optimal scheduling strategy for microgrids with battery swapping stations (BSS) based on information gap decision theory (IGDT) is proposed. The BSS and microgrid operation models are constructed. The constant current-constant voltage equations, which are closer to the engineering practice, are used to describe the charging process, while the model is kept convex through the piecewise linearization method. On this basis, the risk-averse and risk-seeking IGDT models are established, and scheduling strategies under different risk preferences are provided. Simulation results show that the proposed strategy can effectively handle multiple uncertainties from microgrid operation while mitigating operational risks and reducing operating costs.

关键词

电动汽车 / 微电网 / 不确定性分析 / 换电站 / 信息间隙决策理论

Key words

electric vehicles / microgrids / uncertainty analysis / battery swapping station / information gap decision theory

引用本文

导出引用
王子奇, 侯思祖. 基于信息间隙决策理论的含BSS微电网最优调度策略[J]. 太阳能学报. 2025, 46(4): 164-172 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2128
Wang Ziqi, Hou Sizu. OPTIMAL SCHEDULING STRATEGY FOR MICROGRIDS WITH BSS BASED ON INFORMATION GAP DECISION THEORY[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 164-172 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2128
中图分类号: TM732   

参考文献

[1] 周雅夫, 史宏宇. 面向实车数据的电动汽车电池退役轨迹预测[J]. 太阳能学报, 2022, 43(5): 510-517.
ZHOU Y F, SHI H Y.Battery retirement trajectory prediction of electric vehicle based on real vehicle data[J]. Acta energiae solaris sinica, 2022, 43(5): 510-517.
[2] XU X, HU W, LIU W, et al.Robust energy management for an on-grid hybrid hydrogen refueling and battery swapping station based on renewable energy[J]. Journal of cleaner production, 2022, 331: 129954.
[3] WANG Z Q, HOU S Z, LI B K, et al.A day-ahead bidding strategy for battery swapping and charging system participating in the regulation market[J]. IET generation, transmission & distribution, 2023, 17(5): 1135-1147.
[4] AHMADI JIRDEHI M, SOHRABI TABAR V.Risk-aware energy management of a microgrid integrated with battery charging and swapping stations in the presence of renewable resources high penetration, crypto-currency miners and responsive loads[J]. Energy, 2023, 263: 125719.
[5] 崔杨, 刘柏岩, 仲悟之, 等. 考虑积压惩罚机制的含BSS微网联合系统优化调度策略[J]. 电网技术, 2020, 44(10): 3787-3793.
CUI Y, LIU B Y, ZHONG W Z, et al.Optimal scheduling strategy for joint system with micro-grid containing BSS considering overstock punishment mechanism[J]. Power system technology, 2020, 44(10): 3787-3793.
[6] 崔杨, 刘柏岩, 赵钰婷, 等. 计及车辆转移机制的含BSS微网联合系统优化调度策略[J]. 高电压技术, 2022, 48(1): 366-373.
CUI Y, LIU B Y, ZHAO Y T, et al.Optimal scheduling strategy for joint system with microgrid containing BSS considering vehicle transfer mechanism[J]. High voltage engineering, 2022, 48(1): 366-373.
[7] 李智轩, 蔺红. 电动汽车电池交换站与微网的协调优化调度[J]. 陕西科技大学学报, 2022, 40(4): 150-157.
LI Z X, LIN H.Coordination and optimization of electric vehicle battery swap station and microgrid[J]. Journal of Shaanxi University of Science & Technology, 2022, 40(4): 150-157.
[8] 崔杨, 李翼成, 付小标, 等. 基于换电服务定价策略及动态调控方法的含充换电站微电网系统双层优化调度[J]. 电网技术, 2023, 47(5): 1998-2011.
CUI Y, LI Y C, FU X B, et al.Double-layer optimal scheduling of micro-grid system with charging and swapping stations based on battery swap service pricing strategy and dynamic regulation[J]. Power system technology, 2023, 47(5): 1998-2011.
[9] 王子奇, 侯思祖, 郭威. 考虑库存电池的光储换电站优化充电策略[J]. 电力自动化设备, 2022, 42(10): 142-148, 176.
WANG Z Q, HOU S Z, GUO W.Optimal charging strategy of PV-BESS-based battery swapping station considering inventory batteries[J]. Electric power automation equipment, 2022, 42(10): 142-148, 176.
[10] REZAEE JORDEHI A, JAVADI M S, CATALÃO J P S. Optimal placement of battery swap stations in microgrids with micro pumped hydro storage systems, photovoltaic, wind and geothermal distributed generators[J]. International journal of electrical power & energy systems, 2021, 125: 106483.
[11] 程杉, 尚冬冬, 魏昭彬, 等. 基于纳什议价博弈的微电网一体化电站分布式协调优化[J]. 电机与控制学报, 2022, 26(5): 86-95.
CHENG S, SHANG D D, WEI Z B, et al.Hierarchical and distributed coordination and optimization of microgrid with CSSIS based on Nash bargaining game[J]. Electric machines and control, 2022, 26(5): 86-95.
[12] 程杉, 倪凯旋, 赵孟雨. 基于Stackelberg博弈的充换储一体化电站微电网双层协调优化调度[J]. 电力自动化设备, 2020, 40(6): 49-55, 69.
CHENG S, NI K X, ZHAO M Y.Stackelberg game based bi-level coordinated optimal scheduling of microgrid accessed with charging-swapping-storage integrated station[J]. Electric power automation equipment, 2020, 40(6): 49-55, 69.
[13] INFANTE W, MA J, HAN X Q, et al.Optimal recourse strategy for battery swapping stations considering electric vehicle uncertainty[J]. IEEE transactions on intelligent transportation systems, 2019, 21(4): 1369-1379.
[14] 孙波, 董浩, 王璐, 等. 计及电动汽车需求响应的风储混合系统日前联合优化调度模型[J]. 太阳能学报, 2021, 42(4): 107-114.
SUN B, DONG H, WANG L, et al.Joint optimal scheduling model for wind-storage hybrid system considering demand response of electric vehicle[J]. Acta energiae solaris sinica, 2021, 42(4): 107-114.
[15] 曾宪锴, 杨苹, 刘璐瑶, 等. 电力现货市场环境下电动汽车充换电站的优化调控策略[J]. 电力自动化设备, 2022, 42(10): 38-45.
ZENG X K, YANG P, LIU L Y, et al.Optimal regulation strategy of battery charging and swapping station for electric vehicles under electricity spot market environment[J]. Electric power automation equipment, 2022, 42(10): 38-45.
[16] 袁洪涛, 韦钢, 张贺, 等. 计及充换储一体站的主动配电网鲁棒优化调度[J]. 中国电机工程学报, 2020, 40(8): 2453-2468.
YUAN H T, WEI G, ZHANG H, et al.Robust optimal scheduling of active distribution network considering with the charging-swapping-storage integrated station[J]. Proceedings of the CSEE, 2020, 40(8): 2453-2468.
[17] 叶鹤林, 刘松, 胡剑, 等. 基于IGDT的含光热电站电力系统多源联合调度策略[J]. 电力系统保护与控制, 2021, 49(23): 35-43.
YE H L, LIU S, HU J, et al.Multi-source joint dispatching strategy for a power system with concentrating solar power plants based on IGDT[J]. Power system protection and control, 2021, 49(23): 35-43.
[18] 李芳方, 原野, 王海燕. 基于信息决策的最优保守度配电网恢复策略[J]. 科学技术与工程, 2021, 21(35): 15052-15060.
LI F F, YUAN Y, WANG H Y.Optimal conservative distribution network restoration strategy based on information decision[J]. Science technology and engineering, 2021, 21(35): 15052-15060.
[19] 陶然, 赵冬梅, 王浩翔. 基于信息间隙决策理论的配电网韧性提升规划方法[J]. 电力系统自动化, 2022, 46(9): 32-41.
TAO R, ZHAO D M, WANG H X.Planning method for resilience enhancement of distribution network based on information gap decision theory[J]. Automation of electric power systems, 2022, 46(9): 32-41.
[20] 陆燕娟, 潘庭龙, 杨朝辉. 计及电动汽车的社区微网储能容量配置[J]. 太阳能学报, 2021, 42(12): 362-367.
LU Y J, PAN T L, YANG C H.Energy storage capacity configuration in community microgrid considering electric vehicles[J]. Acta energiae solaris sinica, 2021, 42(12): 362-367.
[21] LI X Y, CAO Y, YAN F, et al.Towards user-friendly energy supplement service considering battery degradation cost[J]. Energy, 2022, 249: 123716.
[22] WANG Z Q, HOU S Z, GUO W.Inventory management of battery swapping and charging stations considering uncertainty[J]. International journal of electrical power & energy systems, 2024, 155: 109528.
[23] 米阳, 李海鹏, 陈博洋, 等. 基于模糊场景聚类的微电网两阶段优化配置[J]. 上海交通大学学报, 2023, 57(9): 1137-1145.
MI Y, LI H P, CHEN B Y, et al.Two-stage optimal configuration of microgrid based on fuzzy scene clustering[J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1137-1145.
[24] 北京市发展和改革委员会. 关于调整本市一般工商业销售电价有关问题的通知[EB/OL].http://fgw.beijing.gov.cn/fgwzwgk/zcgk/bwqtwj/201912/t20191226_1506705.htm.
Beijing Municipal Commission of Development and Reform. Notice on the adjustment of the general industrial and commercial sales electricity price in Beijing[EB/OL].http://fgw.beijing.gov.cn/fgwzwgk/zcgk/bwqtwj/201912/t20191226_1506705.htm.

基金

国家重点研发计划项目(2018YFF01011900)

PDF(1351 KB)

Accesses

Citation

Detail

段落导航
相关文章

/