C型挡板式圆筒振荡水柱装置的数值模拟研究

单治钢, 潘佳鹏, 王成灿, 孙淼军, 何方

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 700-705.

PDF(1220 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1220 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 700-705. DOI: 10.19912/j.0254-0096.tynxb.2023-2132

C型挡板式圆筒振荡水柱装置的数值模拟研究

  • 单治钢1, 潘佳鹏2, 王成灿1, 孙淼军1, 何方2
作者信息 +

NUMERICAL STUDY ON CYLINDRICAL OSCILLATING WATER COLUMN DEVICE WITH C-TYPE BAFLE

  • Shan Zhigang1, Pan Jiapeng2, Wang Chengcan1, Sun Miaojun1, He Fang2
Author information +
文章历史 +

摘要

基于Star-CCM+软件建立三维数值波浪水槽,研究圆筒振荡水柱(OWC)装置在不同C型挡板开口角度和波向条件下的水动力特性及波能俘获性能。结果表明:C型挡板可对OWC装置波能俘获产生一定的增强效果,当波浪为正向入射且挡板开口角度为180°时增效幅度最优,在当前挡板高度下最高可提升43.7%的波能俘获效率。当开口角度小于180°或波浪为斜向入射时,与最优增效幅度相比,C型挡板会阻碍一定的入射波浪能量进入气室,从而导致气室内部液面和压强振荡减弱,增效幅度降低,在某些条件下甚至会产生负面效果。

Abstract

Utilizing the Star-CCM+ software, a three-dimensional numerical wave flume is established to investigate the influence of both C-type baffle opening angle and wave direction on the OWC's performance. The results show that the C-type baffle can significantly improve the wave energy capture efficiency of the OWC device. The optimal efficiency gain is achieved at an opening angle of 180° under normal wave conditions, with an increase of up to 43.7% compared to the unbaffled OWC. However, baffles can also impede wave energy entry into the chamber when opening angles are less than 180° or under oblique wave conditions. This leads to the water level and pressure oscillations within the chamber to weaken, diminishing efficiency gains and even potentially producing negative effects.

关键词

波浪能 / 水动力 / 波能转化 / 振荡水柱 / C型挡板

Key words

wave energy / hydrodynamic / wave energy conversion / oscillating water column / C-type baffle

引用本文

导出引用
单治钢, 潘佳鹏, 王成灿, 孙淼军, 何方. C型挡板式圆筒振荡水柱装置的数值模拟研究[J]. 太阳能学报. 2025, 46(4): 700-705 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2132
Shan Zhigang, Pan Jiapeng, Wang Chengcan, Sun Miaojun, He Fang. NUMERICAL STUDY ON CYLINDRICAL OSCILLATING WATER COLUMN DEVICE WITH C-TYPE BAFLE[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 700-705 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2132
中图分类号: P743.2   

参考文献

[1] CAPELLÁN-PÉREZ I, MEDIAVILLA M, DE CASTRO C, et al. Fossil fuel depletion and socio-economic scenarios: an integrated approach[J]. Energy, 2014, 77: 641-666.
[2] HE F, LIU Y B, PAN J P, et al.Advanced ocean wave energy harvesting: current progress and future trends[J]. Journal of Zhejiang University-science A, 2023, 24(2): 91-108.
[3] HEATH T V.A review of oscillating water columns[J]. Philosophical transactions series A, mathematical, physical, and engineering sciences, 2012, 370(1959): 235-245.
[4] DOYLE S, AGGIDIS G A.Development of multi-oscillating water columns as wave energy converters[J]. Renewable and sustainable energy reviews, 2019, 107: 75-86.
[5] 李猛, 吴必军, 伍儒康. 直管型中心管波能模型的数值计算和实验研究[J]. 太阳能学报, 2022, 43(3): 80-86.
LI M, WU B J, WU R K.Numerical calculation and experimental study on straight center pipe spar buoy wave energy model[J]. Acta energiae solaris sinica, 2022, 43(3): 80-86.
[6] ZHENG S M, ZHANG Y L, IGLESIAS G.Coast/breakwater-integrated OWC: a theoretical model[J]. Marine structures, 2019, 66: 121-135.
[7] 李猛, 吴必军, 伍儒康, 等. 前方后尖浮舱五边形后弯管水槽性能实验研究[J]. 太阳能学报, 2019, 40(12): 3339-3347.
LI M, WU B J, WU R K, et al.Experimental study on performance of pentagonal backward bent duct buoy with buoyancy tank square in front and triangular in back in 2d wave tank[J]. Acta energiae solaris sinica, 2019, 40(12): 3339-3347.
[8] HUANG S J, HUANG Z H.Hydrodynamic performance of a row of closely-spaced bottom-sitting oscillating water columns[J]. Renewable energy, 2022, 195: 344-356.
[9] HE F, ZHANG H S, ZHAO J J, et al.Hydrodynamic performance of a pile-supported OWC breakwater: an analytical study[J]. Applied ocean research, 2019, 88: 326-340.
[10] MAYON R, NING D Z, ZHANG C W, et al.Wave energy capture by an omnidirectional point sink oscillating water column system[J]. Applied energy, 2021, 304: 117795.
[11] 郭权势, 邓争志, 万占鸿. 集成于方箱防波堤的双气室振荡水柱波能装置转换效率研究[J]. 海洋工程, 2022, 40(2): 106-117.
GUO Q S, DENG Z Z, WAN Z H.A study on the wave power extraction efficiency of the dual-chamber OWC converter integrated into a rectangular breakwater[J]. The ocean engineering, 2022, 40(2): 106-117.
[12] EVANS D V.The oscillating water column wave-energy device[J]. IMA journal of applied mathematics, 1978, 22(4): 423-433.
[13] ELHANAFI A, FLEMING A, MACFARLANE G, et al.Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column-wave energy converter[J]. Renewable energy, 2017, 105: 209-231.
[14] ZHOU Y, ZHANG C W, NING D Z.Hydrodynamic investigation of a concentric cylindrical OWC wave energy converter[J]. Energies, 2018, 11(4): 985.
[15] 何方, 唐晓, 潘佳鹏, 等. 波能利用型圆筒透空堤水动力特性实验研究[J]. 太阳能学报, 2022, 43(12): 469-475.
HE F, TANG X, PAN J P, et al.Experimental investigation on hydrodynamic characteristics of wave-energy-utilization type cylindrical open breakwater[J]. Acta energiae solaris sinica, 2022, 43(12): 469-475.
[16] XU C H, HUANG Z H, DENG Z Z.Experimental and theoretical study of a cylindrical oscillating water column device with a quadratic power take-off model[J]. Applied ocean research, 2016, 57: 19-29.
[17] XU C H, HUANG Z H.Three-dimensional CFD simulation of a circular OWC with a nonlinear power-takeoff: model validation and a discussion on resonant sloshing inside the pneumatic chamber[J]. Ocean engineering, 2019, 176: 184-198.
[18] GODA Y, SUZUKI Y.Estimation of incident and reflected waves in random wave experiments[C]//Coastal Engineering 1976. Honolulu, Hawaii, USA, 1977: 828-845.
[19] DENG Z Z, HUANG Z H, LAW A W K. Wave power extraction by an axisymmetric oscillating-water-column converter supported by a coaxial tube-sector-shaped structure[J]. Applied ocean research, 2013, 42: 114-123.
[20] ZHENG S M, ZHU G X, SIMMONDS D, et al.Wave power extraction from a tubular structure integrated oscillating water column[J]. Renewable energy, 2020, 150: 342-355.

基金

浙江省“尖兵”研发攻关计划(2022C03009); 浙江省万人计划科技创新领军人才项目(2021R52050)

PDF(1220 KB)

Accesses

Citation

Detail

段落导航
相关文章

/