基于DFIG-MBSDC参数多步优化及约束边界调整的电力系统低频振荡抑制

李生虎, 汪壮

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 530-540.

PDF(1592 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1592 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 530-540. DOI: 10.19912/j.0254-0096.tynxb.2023-2136

基于DFIG-MBSDC参数多步优化及约束边界调整的电力系统低频振荡抑制

  • 李生虎1,2, 汪壮1,2
作者信息 +

POWER SYSTEM LOW-FREQUENCY OSCILLATION DAMPING BASED ON MULTI-STEP OPTIMIZATION AND CONSTRAINT BOUNDARY ADJUSTMENT OF DFIG-MBSDC PARAMETERS

  • Li Shenghu1,2, Wang Zhuang1,2
Author information +
文章历史 +

摘要

在双馈感应发电机(DFIG)上安装多通道附加阻尼控制器(MBSDC),可抑制电网多个低频振荡(LFO)模式,但控制效果与其控制参数有关。基于特征值灵敏度的单步优化算法存在截断误差,优化后危险模式和关键参数可能变化,因此不能确保抑制效果。该文在DFIG并网系统小扰动稳定模型基础上,基于模式危险程度,提出LFO模式相对灵敏度加权方法,确定MBSDC关键控制参数。提出MBSDC参数多步优化模型及优化目标对约束边界灵敏度,以调整MBSDC参数,改善阻尼效果。基于小/大扰动仿真分析,验证所提DFIG-MBSDC参数多步优化模型及约束边界调整方法的振荡抑制效果。

Abstract

With the multi-band supplementary damping controller (MBSDC) at doubly-fed induction generator (DFIG), multiple low-frequency oscillation (LFO) modes in the power system may be damped, but the control effect is related to the MBSDC’s parameters. The single-step optimization based on the eigen-sensitivity has the truncation error, and the critical modes and the key parameters may change after optimization, thus the control effect can not be guaranteed. In this paper, the small-disturbance stability model of power system with DFIGs is derived. The severity degree of the critical modes is applied to weight the relative sensitivity of the LFO modes and find the critical parameters of the MBSDC. A multi-step optimization model for parameter optimization is proposed. The sensitivity model of the objective function with respect to the limits of the constraints is proposed to adjust the control parameters and improve the damping effect. The simulation results with small/large disturbances are provided to verify the damping effect of the proposed multi-step optimization model and the constraint boundary adjustment methods for the DFIG-MBSDC.

关键词

风电 / 灵敏度分析 / 优化 / 低频振荡 / 多通道附加阻尼控制器 / 约束边界调整

Key words

wind power / sensitivity analysis / optimization / low-frequency oscillation (LFO) / multi-band supplementary damping controller (MBSDC) / constraint boundary adjustment

引用本文

导出引用
李生虎, 汪壮. 基于DFIG-MBSDC参数多步优化及约束边界调整的电力系统低频振荡抑制[J]. 太阳能学报. 2025, 46(4): 530-540 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2136
Li Shenghu, Wang Zhuang. POWER SYSTEM LOW-FREQUENCY OSCILLATION DAMPING BASED ON MULTI-STEP OPTIMIZATION AND CONSTRAINT BOUNDARY ADJUSTMENT OF DFIG-MBSDC PARAMETERS[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 530-540 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2136
中图分类号: TM712   

参考文献

[1] 肖云涛, 李光辉, 王伟胜, 等. 新能源基地经LCC-HVDC送出系统振荡机理分析与抑制策略(一): 计及受端影响的阻抗建模[J]. 中国电机工程学报, 2023, 43(2): 427-441.
XIAO Y T, LI G H, WANG W S, et al.Oscillation mechanism analysis and suppression strategy of renewable energy base connected into LCC-HVDC (part I): impedance modeling with the consideration of receiving-end influence[J]. Proceedings of the CSEE, 2023, 43(2): 427-441.
[2] 张进, 李少林, 王伟胜, 等. 双馈风电机组虚拟惯量控制量化分析与参数优化整定[J]. 电网技术, 2023, 47(4): 1369-1379.
ZHANG J, LI S L, WANG W S, et al.Quantitative analysis and parameter optimization of virtual inertia control for doubly fed wind turbine[J]. Power system technology, 2023, 47(4): 1369-1379.
[3] 杨超, 李东翰, 胡姚刚, 等. 附加阻尼控制下风电机组机网耦合载荷建模及分析[J]. 太阳能学报, 2024, 45(2): 102-108.
YANG C, LI D H, HU Y G, et al.Modeling and analysis on machine-grid coupling loads of WTGs with additional damping control[J]. Acta energiae solaris sinica, 2024, 45(2): 102-108.
[4] 孙华东, 徐式蕴, 许涛, 等. 电力系统安全稳定性的定义与分类探析[J]. 中国电机工程学报, 2022, 42(21): 7796-7809.
SUN H D, XU S Y, XU T, et al.Research on definition and classification of power system security and stability[J]. Proceedings of the CSEE, 2022, 42(21): 7796-7809.
[5] 韩应生, 孙海顺, 秦世耀, 等. 电压源型双馈风电并网系统小扰动低频稳定性分析[J]. 电工技术学报, 2023, 38(5): 1312-1324, 1374.
HAN Y S, SUN H S, QIN S Y, et al.Low-frequency stability analysis of voltage-sourced doubly-fed wind power grid-connected system under small disturbance[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1312-1324, 1374.
[6] CHI Y N, TANG B J, HU J B, et al.Overview of mechanism and mitigation measures on multi-frequency oscillation caused by large-scale integration of wind power[J]. CSEE journal of power and energy systems, 2019, 5(4): 433-443.
[7] 王海鑫, 刘铭崎, 董鹤楠, 等. 含高比例新能源的电力系统低频振荡分析与抑制综述[J]. 电力自动化设备, 2023, 43(9): 152-163.
WANG H X, LIU M Q, DONG H N, et al.Review on analysis and suppression of low-frequency oscillation in power system with high penetration of renewable energy sources[J]. Electric power automation equipment, 2023, 43(9): 152-163.
[8] 刘铖, 刁硕, 郝文波, 等. 基于势能-滑模的双馈风电机组广域阻尼控制设计方法[J]. 太阳能学报, 2023, 44(8): 453-459.
LIU C, DIAO S, HAO W B, et al.Wide area damping control design method of DFIG based on potential energy-sliding mode[J]. Acta energiae solaris sinica, 2023, 44(8): 453-459.
[9] JALAYER R, OOI B T.Co-ordinated PSS tuning of large power systems by combining transfer function-eigenfunction analysis (TFEA), optimization, and eigenvalue sensitivity[J]. IEEE transactions on power systems, 2014, 29(6): 2672-2680.
[10] 杨涛, 廖勇. 含双馈风电场的互联电力系统虚拟惯量与虚拟阻尼协调控制方法[J]. 电力自动化设备, 2020, 40(11): 92-100.
YANG T, LIAO Y.Coordinated control method of virtual inertia and virtual damping for interconnected power system with doubly-fed wind farm[J]. Electric power automation equipment, 2020, 40(11): 92-100.
[11] LI Y S, GAO W, HUANG S, et al.Data-driven optimal control strategy for virtual synchronous generator via deep reinforcement learning approach[J]. Journal of modern power systems and clean energy, 2021, 9(4): 919-929.
[12] EDRAH M, ZHAO X W, HUNG W, et al.Effects of POD control on a DFIG wind turbine structural system[J]. IEEE transactions on energy conversion, 2020, 35(2): 765-774.
[13] 李生虎, 张亚海, 叶剑桥, 等. 基于双馈风电机组控制参数优化的电网功角振荡控制[J]. 电工技术学报, 2023, 38(5): 1325-1338.
LI S H, ZHANG Y H, YE J Q, et al.Power angle oscillation control of power grid based on control parameter optimization of doubly-fed wind turbine generator[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1325-1338.
[14] ZHANG C, KE D P, SUN Y Z, et al.Coordinated supplementary damping control of DFIG and PSS to suppress inter-area oscillations with optimally controlled plant dynamics[J]. IEEE transactions on sustainable energy, 2018, 9(2): 780-791.
[15] ZHANG G Z, HU W H, ZHAO J B, et al.A novel deep reinforcement learning enabled multi-band PSS for multi-mode oscillation control[J]. IEEE transactions on power systems, 2021, 36(4): 3794-3797.
[16] 江崇熙, 石鹏, 黄伟, 等. 考虑多振荡模式的多频段电力系统稳定器参数整定方法[J]. 电力系统自动化, 2020, 44(4): 142-149.
JIANG C X, SHI P, HUANG W, et al.Parameter setting method for multi-band power system stabilizer considering multiple oscillation modes[J]. Automation of electric power systems, 2020, 44(4): 142-149.
[17] 陈宝平, 林涛, 陈汝斯, 等. 机侧与网侧多通道附加阻尼控制器参数协调综合抑制低频振荡和次同步振荡[J]. 电力自动化设备, 2018, 38(11): 50-56, 62.
CHEN B P, LIN T, CHEN R S, et al.Parameter coordination of generator-side and grid-side multi-channel supplementary damping controllers to suppress low-frequency oscillation and sub-synchronous oscillation comprehensively[J]. Electric power automation equipment, 2018, 38(11): 50-56, 62.
[18] 李生虎, 张奥博, 夏伟健, 等. 并网DFIG多通道附加阻尼控制器设计及其控制参数整定[J]. 电力自动化设备, 2023, 43(7): 73-79.
LI S H, ZHANG A B, XIA W J, et al.Design and parameter setting for multi-band supplementary damping controller of system integrated DFIG[J]. Electric power automation equipment, 2023, 43(7): 73-79.
[19] 吴玲, 张秀锦, 刘秋华, 等. 基于多元宇宙优化算法的光伏发电MPPT控制算法[J]. 太阳能学报, 2023, 44(9): 204-211.
WU L, ZHANG X J, LIU Q H, et al.MPPT control algorithm of photovoltaic power generation based on multi-verse optimization algorithm[J]. Acta energiae solaris sinica, 2023, 44(9): 204-211.
[20] LI S H, HUANG J J, ZHANG H, et al.Successive linear programming to improve small-signal stability of power systems with doubly-fed induction generators[J]. Electric power components and systems, 2019, 47(9/10): 927-939.
[21] 程珊珊, 王海鑫, 杨子豪, 等. 虚拟同步发电机对系统低频振荡的影响及抑制方法综述[J]. 太阳能学报, 2023, 44(8): 119-129.
CHENG S S, WANG H X, YANG Z H, et al.Overview of effect of virtual synchronous generators on low-frequency oscillation of power system and suppression methods[J]. Acta energiae solaris sinica, 2023, 44(8): 119-129.
[22] LI S H, ZHANG H, YAN Y S, et al.Parameter optimization to power oscillation damper (POD) considering its impact on the DFIG[J]. IEEE transactions on power systems, 2022, 37(2): 1508-1518.
[23] 聂永辉, 庄灿冰, 郭强, 等. 含风电互联系统的SVC附加双通道广域阻尼控制设计[J]. 高电压技术, 2022, 48(1): 125-135.
NIE Y H, ZHUANG C B, GUO Q, et al.Design of SVC with additional two-channel wide-area damping control for wind power interconnection system[J]. High voltage engineering, 2022, 48(1): 125-135.
[24] 孙正龙, 李浩博, 刘铖, 等. 含虚拟惯量的双馈风电机组扭振阻尼特性分析与抑制方法研究[J]. 电网技术, 2021, 45(12): 4671-4683.
SUN Z L, LI H B, LIU C, et al.Torsional oscillation damping characteristics and suppression methods of doubly-fed induction generator with virtual inertia[J]. Power system technology, 2021, 45(12): 4671-4683.
[25] 李生虎, 蒋以天. 基于无功优化的DFIG并网电力系统OSC-OPF算法[J]. 电力系统自动化, 2020, 44(15): 70-76.
LI S H, JIANG Y T.Oscillatory stability constrained optimal power flow algorithm based on reactive power optimization for DFIG integrated power system[J]. Automation of electric power systems, 2020, 44(15): 70-76.
[26] 孙焜, 姚伟, 周毅, 等. 基于SISO序阻抗的直驱风场经柔直输电系统中频振荡机理分析及抑制[J]. 中国电机工程学报, 2023, 43(2): 442-454.
SUN K, YAO W, ZHOU Y, et al.Mechanism analysis and suppression of medium-frequency oscillation based on the SISO impedance in a PMSG-based wind farm when connected to a VSC-HVDC[J]. Proceedings of the CSEE, 2023, 43(2): 442-454.
[27] 付强, 杜文娟, 王海风. 多虚拟同步发电机接入对电力系统机电振荡模式的影响[J]. 中国电机工程学报, 2018, 38(19): 5615-5624, 5919.
FU Q, DU W J, WANG H F.Influence of multi virtual synchronous generators on power system electromechanical oscillation mode[J]. Proceedings of the CSEE, 2018, 38(19): 5615-5624, 5919.

基金

国家自然科学基金(51877061)

PDF(1592 KB)

Accesses

Citation

Detail

段落导航
相关文章

/