前缘小翼对风力机翼型风沙冲蚀磨损及气动性能的影响研究

李德顺, 张睿, 王清, 李征宇, 付宁

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 541-549.

PDF(1905 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1905 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 541-549. DOI: 10.19912/j.0254-0096.tynxb.2023-2137

前缘小翼对风力机翼型风沙冲蚀磨损及气动性能的影响研究

  • 李德顺1,2, 张睿1, 王清1,2, 李征宇1, 付宁1
作者信息 +

INFLUENCE OF LEADING EDGE AUXILIARY AIRFOIL ON WIND-SAND EROSION AND AERODYNAMIC PERFORMANCE OF WIND TURBINE BLADES

  • Li Deshun1,2, Zhang Rui1, Wang Qing1,2, Li Zhengyu1, Fu Ning1
Author information +
文章历史 +

摘要

为研究前缘小翼对风力机翼型抗风沙冲蚀性能的影响,采用RANS方程耦合离散项DPM模型开展风力机翼型风沙环境下的数值模拟研究。研究表明适当位置加装前缘小翼能够实现在提升翼型气动性能的同时增强翼型的抗风沙冲蚀磨损能力,在前缘小翼弦长25 mm,与主翼型相对距离为125 mm圆弧范围内安装前缘小翼能获得良好的抗冲蚀磨损效果,但在部分安装位置会出现失速攻角减小的情况。通过对比不同主翼型下前缘小翼的抗风沙冲蚀磨损性能,研究发现前缘小翼的抗风沙冲蚀磨损作用更适用于非对称翼型并能使相对厚度较大的翼型磨损量后移。

Abstract

In order to investigate the effect of leading edge auxiliary airfoil on the wind-sand erosion resistance of wind turbine wing shapes, the numerical simulation of wind turbine airfoil in a sandy environment was carried out by using the RANS equation coupled with the discrete term DPM model. Research results show that installing a leading edge auxiliary airfoil in an appropriate position can enhance the aerodynamic performance of the airfoil while enhancing its resistance to wind-sand erosion and wear. The installation of leading edge auxiliary airfoil within the chord length of 25 mm and the relative distance of 125 mm from the main airfoil can obtain good erosion and abrasion resistance, but the stall angle of attack way be reduced in some of the installation positions. By comparing the wind-sand erosion performance of leading edge auxiliary airfoils under different main wing shapes, it is found that the wind-sand erosion effect of leading edge auxiliary airfoil is more suitable for asymmetric airfoils and can shift backward the erosion amount of airfoils with larger relative thicknesses.

关键词

翼型 / 流动控制 / 风力机 / 沙尘环境 / 磨损 / 数值模拟

Key words

airfoil / flow control / wind turbine / sand environment / erosion / numerical simulation

引用本文

导出引用
李德顺, 张睿, 王清, 李征宇, 付宁. 前缘小翼对风力机翼型风沙冲蚀磨损及气动性能的影响研究[J]. 太阳能学报. 2025, 46(4): 541-549 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2137
Li Deshun, Zhang Rui, Wang Qing, Li Zhengyu, Fu Ning. INFLUENCE OF LEADING EDGE AUXILIARY AIRFOIL ON WIND-SAND EROSION AND AERODYNAMIC PERFORMANCE OF WIND TURBINE BLADES[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 541-549 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2137
中图分类号: TK81   

参考文献

[1] VAN ROOIJ R P J O M, TIMMER W A. Roughness sensitivity considerations for thick rotor blade airfoils[J]. Journal of solar energy engineering, 2003, 125(4): 468-478.
[2] HOSOKAWA S, TOMIYAMA A, MORIMURA M, et al.Influences of relative velocity on turbulent intensity in gas-solid two-phase flow in a vertical pipe[C]//Third International Conference on Multiphase Flow, ICMF’98. Lyon, France, 1998.
[3] 杨具瑞, 方铎, 毕慈芬, 等. 非均匀风沙起动规律研究[J]. 中国沙漠, 2004, 24(2): 248-251.
YANG J R, FANG D, BI C F, et al.Initiation thresholds of non-uniform blown sand[J]. Journal of desert research, 2004, 24(2): 248-251.
[4] HOSSAM EL-DIN A, DIAB A. A preliminary study of the blade erosion for a wind turbine operating in a dusty environment[C]//ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, South Korea, 2016.
[5] ALDEN A M H, DIAB A. Assessment of losses in annual energy production of wind turbines subjected to sand erosion[C]//Proceedings of ICFD’12. Cairo, Egypt, 2016.
[6] FIORE G, SELIG M S. Simulation of damage progression on wind turbine blades subject to particle erosion[C]//54th AIAA Aerospace Sciences Meeting. San Diego, California, USA, 2016: AIAA2016-0813.
[7] 韩伟, 金俊俊, 李银然, 等. 不同雷诺数风沙来流下粒径对S809翼型性能的影响[J]. 兰州理工大学学报, 2019, 45(5): 62-67.
HAN W, JIN J J, LI Y R, et al.Influence of sand particle diameter on aerodynamic performance of S809 airfoil under oncoming flow of sand-wind with different Reynolds numbers[J]. Journal of Lanzhou University of Technology, 2019, 45(5): 62-67.
[8] 李德顺, 王亚娥, 郭兴铎, 等. 沙粒形状对风力机翼型磨损特性及临界颗粒Stokes数的影响[J]. 农业工程学报, 2019, 35(12): 224-231.
LI D S, WANG Y E, GUO X D, et al.Effects of particle shape on erosion characteristic and critical particle Stokes number of wind turbine airfoil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(12): 224-231.
[9] 赵煜. 风沙风洞流动特性试验及风力机叶片材料的冲蚀磨损研究[D]. 兰州: 兰州理工大学, 2020.
ZHAO Y.Experimental study on flow characteristics in wind tunnel and erosion wear of wind turbine blade materials[D]. Lanzhou: Lanzhou University of Technology, 2020.
[10] 梁恩培, 马高生, 李晔, 等. 沙尘环境对风力机关键零部件力学特性影响综述[J]. 中国科学: 物理学力学天文学, 2023, 53(3): 133-145.
LIANG E P, MA G S, LI Y, et al.Summary of the impact of aeolian sand environment on key parts of wind turbine[J]. Scientia sinica (physica, mechanica & astronomica), 2023, 53(3): 133-145.
[11] 李德顺, 梁恩培, 李银然, 等. 风力机叶片涂层风沙冲蚀磨损特性的风洞试验研究[J]. 太阳能学报, 2022, 43(6): 196-203.
LI D S, LIANG E P, LI Y R, et al.Wind tunnel experimental study on erosion and wear characteristics of wind turbine blade coating[J]. Acta energiae solaris sinica, 2022, 43(6): 196-203.
[12] SARKOROV D, SEIFERT A, DETINIS I, et al.Active flow control and part-span slat interactions[J]. AIAA journal, 2016, 54(3): 1095-1106.
[13] ATALAY K D, DENGIZ B, YAVUZ T, et al.Airfoil-slat arrangement model design for wind turbines in fuzzy environment[J]. Neural computing and applications, 2020, 32(17): 13931-13939.
[14] 杨瑞, 周楠楠, 温威月, 等. 前缘辅助小翼对风力机翼型气动性能的影响[J]. 兰州理工大学学报, 2022, 48(1): 53-58.
YANG R, ZHOU N N, WEN W Y, et al.Effects of leading edge auxiliary airfoil on aerodynamic performance of wind turbine airfoil[J]. Journal of Lanzhou University of Technology, 2022, 48(1): 53-58.
[15] GODARD G, STANISLAS M.Control of a decelerating boundary layer. part 1: optimization of passive vortex generators[J]. Aerospace science and technology, 2006, 10(3): 181-191.
[16] 王晓宇, 廖伟丽, 赵鹏, 等. 叶片根部改型对风力机性能影响的研究[J]. 太阳能学报, 2020, 41(7): 274-281.
WANG X Y, LIAO W L, ZHAO P, et al.Research on effect of blade root modification on performance of wind turbine[J]. Acta energiae solaris sinica, 2020, 41(7): 274-281.
[17] 田喜梅. 典型贝类壳体生物耦合特性及其仿生耐磨研究[D]. 长春: 吉林大学, 2013.
TIAN X M.Study on biocoupling characteristics and biomimetic wear resistance of typical shellfish shells[D]. Changchun: Jilin University, 2013.
[18] 傅学刚. 风沙流对风力机叶片的冲蚀磨损及气动特性影响研究[D]. 兰州: 兰州理工大学, 2020.
FU X G.Study on the influence of wind-blown sand flow on erosion wear and aerodynamic characteristics of wind turbine blades[D]. Lanzhou: Lanzhou University of Technology, 2020.
[19] 钟伟, 王同光. 湍流模型封闭常数对S系列翼型CFD模拟的影响[J]. 太阳能学报, 2013, 34(10): 1690-1696.
ZHONG W, WANG T G.Influence of closure coefficient of turbulence model on cfd simulations of S series airfoils[J]. Acta energiae solaris sinica, 2013, 34(10): 1690-1696.
[20] LADSON C L. Effects of independent variation of Mach and Reynolds numbers on the low-speed aerodynamic characteristics of the NACA0012 airfoil section[R]. NASA Technical Memorandum 4047, 1988.
[21] 胡智豪. 基于流动控制的风力机翼型抗冲蚀磨损及气动性能提升方法研究[D]. 兰州: 兰州理工大学, 2023.
HU Z H.Study on erosion resistance and aerodynamic performance improvement method of wind turbine airfoil based on flow control[D]. Lanzhou: Lanzhou University of Technology, 2023.

基金

国家重点研发计划(2022YFB4202104); 国家自然科学基金(52166014); 甘肃省重点研发计划(25YFGA035); 甘肃省教育厅产业支撑计划(2025CYZC-026)

PDF(1905 KB)

Accesses

Citation

Detail

段落导航
相关文章

/