为促进新能源消纳和建筑用能的节能降碳,提出一种计及电网供给-光能利用-热能转换的建筑多能耦合供热系统,针对其可行系统架构,考虑优先太阳能利用运行策略或提高电网运行稳定性运行策略,构建多目标双层优化模型,确定系统中光-电/热、电-热及储能环节的优选设备及其容量,对比两种运行策略下系统优化配置方案及全年运行效果。结果表明:为达到经济性和能效综合最优,建筑多能耦合供热系统应优先配置太阳能集热器、PV/T、电热泵及中温蓄热罐;与优先太阳能利用运行策略相比,提高电网运行稳定性运行策略既实现了电网削峰填谷,又使年化总成本降低2.63%,具有更高的经济性,在系统设计与运行调控中可优先选择。
Abstract
In order to promote renewable energy consumption and energy saving and carbon reduction in the field of building energy, a building multi-energy coupling heating system considering grid supply, solar utilization and thermal energy conversion is proposed. Based on its feasible system architecture, two operational strategies: prioritizing solar energy utilization and enhancing grid operational stability are developed. A multi-objective bilevel optimization model is developed to determine the optimal equipment and their capacities in the photoelectric/thermal, electric-thermal and energy storage segments in the system. The optimal configuration schemes and the annual operating performance under the two operational strategies are compared. The results indicate that in order to achieve the best comprehensive performance in terms of economy and energy efficiency, the building multi-energy coupling heating system should preferably be equipped with a solar collector, PV/T, an electric heat pump and the medium-temperature heat storage tank. Compared to the operation strategy prioritizing solar energy utilization, the operation strategy enhancing grid operation stability not only realizes the peak shaving and valley filling of the grid, but also reduces the annualized total cost by 2.63%, offering higher economic efficiency. Thus, it can be prioritized in system design and operation control.
关键词
太阳能 /
供热 /
多目标优化 /
多能耦合 /
设备优选 /
双层优化
Key words
solar energy /
heating /
multiobjective optimization /
multi-energy coupling /
equipment optimization /
bilevel optimization
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15.
HU A G.China’s goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (social sciences edition), 2021, 21(3): 1-15.
[2] 王灿, 张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理, 2020, 12(6): 58-64.
WANG C, ZHANG Y X.Implementation pathway and policy system of carbon neutrality vision[J]. Chinese journal of environmental management, 2020, 12(6): 58-64.
[3] 杜传铭, 陈孟石, 杜尚斌, 等. 光-气互补冷热电联供系统容量配置与运行研究[J]. 动力工程学报, 2022, 42(1): 83-93.
DU C M, CHEN M S, DU S B, et al.Study on capacity configuration and operation of hybrid CCHP system[J]. Journal of Chinese society of power engineering, 2022, 42(1): 83-93.
[4] NOJAVAN S, AKBARI-DIBAVAR A, FARAHMAND-ZAHED A, et al.RETRACTED: Risk-constrained scheduling of a CHP-based microgrid including hydrogen energy storage using robust optimization approach[J]. International journal of hydrogen energy, 2020, 45(56): 32269-32284.
[5] 高明非, 张策, 解彤, 等. 考虑风光消纳的综合能源系统多元储能优化配置方法[J]. 动力工程学报, 2023, 43(6): 796-804.
GAO M F, ZHANG C, XIE T, et al.Multiple energy storage optimal configuration method for comprehensive energy system considering wind/photovoltaic power accommodation[J]. Journal of Chinese society of power engineering, 2023, 43(6): 796-804.
[6] 杨永标, 于建成, 李奕杰, 等. 含光伏和蓄能的冷热电联供系统调峰调蓄优化调度[J]. 电力系统自动化, 2017, 41(6): 6-12, 29.
YANG Y B, YU J C, LI Y J, et al.Optimal load leveling dispatch of CCHP incorporating photovoltaic and storage[J]. Automation of electric power systems, 2017, 41(6): 6-12, 29.
[7] WANG Y L, MA Y Z, SONG F H, et al.Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response[J]. Energy, 2020, 205: 118022.
[8] 潘华, 梁作放, 肖雨涵, 等. 多场景下区域综合能源系统的优化运行[J]. 太阳能学报, 2021, 42(1): 484-492.
PAN H, LIANG Z F, XIAO Y H, et al.Optimal operation of regional integrated energy system under multiple scenes[J]. Acta energiae solaris sinica, 2021, 42(1): 484-492.
[9] 冯嘉晖. 太阳能冷热电联供系统的设备选型与性能研究[D]. 济南: 山东大学, 2021.
FENG J H.Study on equipment selection and performance of solar energy cogeneration system[D]. Ji’nan: Shandong University, 2021.
[10] 刘涛. 基于TRNSYS的多源热电联产系统仿真模拟与性能分析[D]. 青岛: 青岛大学, 2020.
LIU T.Simulation and performance analysis of multi-source cogeneration system based on TRNSYS[D]. Qingdao: Qingdao University, 2020.
[11] ALI YILDIRIM M, BARTYZEL F, VALLATI A, et al.Efficient energy storage in residential buildings integrated with RESHeat system[J]. Applied energy, 2023, 335: 120752.
[12] ZENG R, ZHANG X F, DENG Y, et al.Optimization and performance comparison of combined cooling, heating and power/ground source heat pump/photovoltaic/solar thermal system under different load ratio for two operation strategies[J]. Energy conversion and management, 2020, 208: 112579.
[13] 冯昊. 寒冷地区太阳能辅助地源热泵供暖运行模式研究[D]. 北京: 华北电力大学, 2020.
FENG H.Research on operation mode of solar assisted ground source heat pump in cold area[D]. Beijing: North China Electric Power University, 2020.
[14] 李浦光. 太阳能光伏光热综合利用采暖通风系统性能研究[D]. 西安: 西安科技大学, 2021.
LI P G.Performance research of solar PV/T comprehensive utilization heating and ventilation system[D]. Xi’an: Xi’an University of Science and Technology, 2021.
[15] 林俊光, 冯彦皓, 林小杰, 等. 综合能源系统源网荷储动态建模技术进展[J]. 热力发电, 2022, 51(10): 92-102.
LIN J G, FENG Y H, LIN X J, et al.Advances in dynamic modelling of source, grid, load and storage in integrated energy systems[J]. Thermal power generation, 2022, 51(10): 92-102.
[16] 祝彩霞, 孙婷婷, 刘艳峰, 等. 太阳能与空气源热泵联合供暖系统容量匹配及运行优化[J]. 太阳能学报, 2021, 42(8): 215-222.
ZHU C X, SUN T T, LIU Y F, et al.Capacity matching and operation optimization of solar energy and air source heat pump combined heating system[J]. Acta energiae solaris sinica, 2021, 42(8): 215-222.
[17] 王天东, 何子睿, 单晓芳, 等. 基于熵权-TOPSIS的光电光热制冷系统评价与分析[J]. 太阳能学报, 2023, 44(9): 229-235.
WANG T D, HE Z R, SHAN X F, et al.Evaluation and analysis of photovoltaic and photothermal refrigeration system based on entropy weight-topsis[J]. Acta energiae solaris sinica, 2023, 44(9): 229-235.
基金
国家电网有限公司科技项目(5400-202212166A-1-1-ZN)