为充分调动综合能源系统用能灵活性,克服源荷不确定性对调度计划产生的影响,提出一种考虑源荷不确定性和柔性负荷的综合能源系统低碳运行调度方法。首先,针对模糊C均值聚类算法无法有效处理高维数据的缺陷,引入一种基于核的相似度函数代替原先的欧式距离,选用源荷特性指标进行数据降维;其次,采用中位数绝对偏差对各类别下的离散值进行筛选,并以欧式距离之和最小为目标函数构建模型,通过麻雀搜索算法对各时刻下的中心值进行求解,生成典型场景;最后,在不确定环境中,综合考虑柔性电负荷、柔性热负荷以及柔性负荷的可平移、可转移和可削减特性,以运行成本、柔性负荷补偿成本和碳交易成本之和最低为目标进行调度。仿真验证所提方案可有效提升经济效益。
Abstract
This paper proposes a low-carbon operation scheduling method for the integrated energy system considering source-load uncertainty and flexible loads to fully utilize system energy flexibility of the system and mitigate the impact of source-load uncertainty on the scheduling plan. Firstly, to address the limitation of fuzzy C-means algorithm in dealing with high-dimensional data, a kernel-based similarity function is introduced to replace the original Euclidean distance, and the source-load characteristic indices are is selected for data dimensionality reduction. Secondly, the median absolute deviation is used to filter the discrete values in each category, and the model is constructed with the minimum sum of Euclidean distances as the objective function. The central values at each time step are solved by the sparrow search algorithm to generate typical scenarios. Finally, the scheduling is carried out to minimize the sum of operating cost, flexible load compensation cost, and carbon transaction cost in an uncertain environment considering the flexible electric load, flexible heat load, and the shiftable, transferable, and reducible characteristics of the flexible load. Simulation results show that the proposed scheme can effectively improve economic benefits.
关键词
综合能源系统 /
优化调度 /
数学模型 /
柔性负荷 /
碳交易
Key words
integrated energy system /
optimization scheduling /
mathematical models /
flexible load /
carbon trading
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李亚峰, 王维庆, 寇洋, 等. 考虑绿证-碳联合交易与需求响应综合能源系统经济运行[J]. 太阳能学报, 2023, 44(11): 538-546.
LI Y F, WANG W Q, KOU Y, et al.Considering green certificate-carbon joint trading and demand response integrated energy system economic operation[J]. Acta energiae solaris sinica, 2023, 44(11): 538-546.
[2] DONG L, WEI J, LIN H, et al.Distributed optimization of electricity-Gas-Heat integrated energy system with multi-agent deep reinforcement learning[J]. Global energy interconnection, 2022, 5(6): 604-617.
[3] 潘华, 梁作放, 肖雨涵, 等. 多场景下区域综合能源系统的优化运行[J]. 太阳能学报, 2021, 42(1): 484-492.
PAN H, LIANG Z F, XIAO Y H, et al.Optimal operation of regional integrated energy system under multiple scenes[J]. Acta energiae solaris sinica, 2021, 42(1): 484-492.
[4] 朱霄珣, 刘占田, 薛劲飞, 等. 计及柔性负荷参与的综合能源系统优化调度[J]. 太阳能学报, 2023, 44(9): 29-38.
ZHU X X, LIU Z T, XUE J F, et al.Optimal scheduling of integrated energy system with flexible load participation[J]. Acta energiae solaris sinica, 2023, 44(9): 29-38.
[5] 王泽森, 石岩, 唐艳梅, 等. 考虑LCA能源链与碳交易机制的综合能源系统低碳经济运行及能效分析[J]. 中国电机工程学报, 2019, 39(6): 1614-1626, 1858.
WANG Z S, SHI Y, TANG Y M, et al.Low carbon economy operation and energy efficiency analysis of integrated energy systems considering LCA energy chain and carbon trading mechanism[J]. Proceedings of the CSEE, 2019, 39(6): 1614-1626, 1858.
[6] 卫志农, 张思德, 孙国强, 等. 基于碳交易机制的电—气互联综合能源系统低碳经济运行[J]. 电力系统自动化, 2016, 40(15): 9-16.
WEI Z N, ZHANG S D, SUN G Q, et al.Carbon trading based low-carbon economic operation for integrated electricity and natural gas energy system[J]. Automation of electric power systems, 2016, 40(15): 9-16.
[7] 魏子强, 温鹏, 梁志, 等. 计及需求响应比例的园区综合能源系统低碳经济调度方法[J]. 太阳能学报, 2023, 44(10): 38-45.
WEI Z Q, WEN P, LIANG Z, et al.Low carbon economic dispatching method of park integrated energy system considering proportion of demand response[J]. Acta energiae solaris sinica, 2023, 44(10): 38-45.
[8] NI L N, LIU W J, WEN F S, et al.Optimal operation of electricity, natural gas and heat systems considering integrated demand responses and diversified storage devices[J]. Journal of modern power systems and clean energy, 2018, 6(3): 423-437.
[9] 胡荣, 张宓璐, 李振坤, 等. 计及可平移负荷的分布式冷热电联供系统优化运行[J]. 电网技术, 2018, 42(3): 715-721.
HU R, ZHANG M L, LI Z K, et al.Optimal operation for CCHP system considering shiftable loads[J]. Power system technology, 2018, 42(3): 715-721.
[10] 张峰, 张鹏, 梁军. 考虑风电功率不确定性的风电场出力计划上报策略[J]. 电力自动化设备, 2019, 39(11): 34-40.
ZHANG F, ZHANG P, LIANG J.Wind farm generation schedule strategy considering wind power uncertainty[J]. Electric power automation equipment, 2019, 39(11): 34-40.
[11] 邱宜彬, 欧阳誉波, 徐蓓, 等. 基于混合藤Copula模型的风光联合发电相关性建模及其在无功优化中的应用[J]. 电网技术, 2017, 41(3): 791-798.
QIU Y B, OUYANG Y B, XU B, et al.Modeling of multi-dimensional wind and PV farm output correlation based on mixture vine copula structures and its application in reactive power optimization[J]. Power system technology, 2017, 41(3): 791-798.
[12] 王晶, 黄越辉, 李驰, 等. 考虑空间相关性和天气类型划分的多光伏电站时间序列建模方法[J]. 电网技术, 2020, 44(4): 1376-1384.
WANG J, HUANG Y H, LI C, et al.Time series modeling method for multi-photovoltaic power stations considering spatial correlation and weather type classification[J]. Power system technology, 2020, 44(4): 1376-1384.
[13] 娄素华, 胡斌, 吴耀武, 等. 碳交易环境下含大规模光伏电源的电力系统优化调度[J]. 电力系统自动化, 2014, 38(17): 91-97.
LOU S H, HU B, WU Y W, et al.Optimal dispatch of power system integrated with large scale photovoltaic generation under carbon trading environment[J]. Automation of electric power systems, 2014, 38(17): 91-97.
[14] 卜凡鹏, 陈俊艺, 张琪祁, 等. 一种基于双层迭代聚类分析的负荷模式可控精细化识别方法[J]. 电网技术, 2018, 42(3): 903-913.
BU F P, CHEN J Y, ZHANG Q Q, et al.A controllable refined recognition method of electrical load pattern based on bilayer iterative clustering analysis[J]. Power system technology, 2018, 42(3): 903-913.
[15] LI Y.Coordinating flexible demand response and renewable uncertainties for scheduling of community integrated energy systems with an electric vehicle charging station: a bi-level approach[C]//2024 IEEE Power & Energy Society General Meeting (PESGM). Seattle, WA, USA, 2024: 1.
[16] LI Y, WANG C L, LI G Q, et al.Optimal scheduling of integrated demand response-enabled integrated energy systems with uncertain renewable generations: a Stackelberg game approach[J]. Energy conversion and management, 2021, 235: 113996.
[17] LI Y, HAN M, SHAHIDEHPOUR M, et al.Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response[J]. Applied energy, 2023, 335: 120749.
[18] HASHEMI S E, GHOLIAN-JOUYBARI F, HAJIAGHAEI-KESHTELI M.A fuzzy C-means algorithm for optimizing data clustering[J]. Expert systems with applications, 2023, 227: 120377.
[19] 余鑫, 吴根秀, 蔡奥丽. 基于双重中位数绝对偏差的证据加权组合方法[J]. 江西师范大学学报(自然科学版), 2022, 46(5): 523-532.
YU X, WU G X, CAI A L.The improved evidence weighted combination method based on double median absolute detection[J]. Journal of Jiangxi Normal University (natural science edition), 2022, 46(5): 523-532.
[20] 陈庆斌, 杨耿煌, 耿丽清, 等. 基于改进麻雀搜索算法的配送中心选址研究[J]. 天津职业技术师范大学学报, 2023, 33(2): 14-19.
CHEN Q B, YANG G H, GENG L Q, et al.Study on distribution center location based on improved sparrow search algorithm[J]. Journal of Tianjin University of Technology and Education, 2023, 33(2): 14-19.
基金
国家重点研发计划(2022YFB2403002); 天津市高等学校科技发展基金计划项目(2022ZD037)