基于多核并行RFECV-GNB的风电机组齿轮箱故障诊断方法

王进花, 袁山钦, 曹洁

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 550-558.

PDF(1417 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1417 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 550-558. DOI: 10.19912/j.0254-0096.tynxb.2023-2150

基于多核并行RFECV-GNB的风电机组齿轮箱故障诊断方法

  • 王进花1, 袁山钦1, 曹洁2
作者信息 +

FAULT DIAGNOSIS METHOD OF WIDN TURBINE GEARBOX BASED ON MULTI-CORE PARELLEL RFECV-GNB

  • Wang Jinhua1, Yuan Shanqin1, Cao Jie2
Author information +
文章历史 +

摘要

针对深度学习的风电机组齿轮箱诊断方法在噪声环境下的鲁棒性较差且在带标签的样本不足时存在诊断精度较低的问题,提出基于RFECV-GNB风电机组齿轮箱故障诊断方法。该方法结合了交叉验证递归特征消除法(RFECV)在故障数据较少时能有效挖掘故障信号的本质特征,以及高斯朴素贝叶斯(GNB)快速高效的性能进行风电机组齿轮箱的故障诊断。同时,针对RFECV训练时间较长这一问题,提出一种基于CPU并行的任务“打包”算法来提高诊断模型的训练速度。该方法通过超额分配逻辑CPU(LCPU)的方式,实现了LCPU之间工作的有效平衡,以此缩短建模时间。最终,通过多个故障数据集进行实验验证,结果表明在相同故障样本数量下,所提方法与传统方法相比,在诊断精度和建模速度上具有明显优势。

Abstract

This paper addresses the critical challenges of poor robustness in noisy environments and low diagnostic accuracy when labelled samples are scarce in deep learning-based wind turbine gearbox fault diagnosis. This paper proposes a novel method that integrates RFECV and GNB for wind turbine gearbox fault diagnosis. This method integrates the capability of RFECV to effectively extract essential fault signatures from limited fault data with the high computational efficiency of GNB for wind turbine gearbox fault diagnosis. To mitigate the prolonged training time of RFECV, a CPU parallelized task “packaging” algorithm is introduced, enhancing modeling performance via the over-subscription of LCPUs and efficient load distribution among LCPUs. Extensive experiments on multiple fault datasets demonstrate that the proposed method outperforms traditional approaches with significantly superior diagnostic accuracy and modelling speed under the same number of faulty samples.

关键词

风电机组 / 齿轮箱 / 故障诊断 / 贝叶斯定理 / 特征选择 / CPU并行

Key words

wind turbines / gearbox / fault diagnosis / Bayesian theorem / feature selection / CPU parallelism

引用本文

导出引用
王进花, 袁山钦, 曹洁. 基于多核并行RFECV-GNB的风电机组齿轮箱故障诊断方法[J]. 太阳能学报. 2025, 46(4): 550-558 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2150
Wang Jinhua, Yuan Shanqin, Cao Jie. FAULT DIAGNOSIS METHOD OF WIDN TURBINE GEARBOX BASED ON MULTI-CORE PARELLEL RFECV-GNB[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 550-558 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2150
中图分类号: TK83    TP181   

参考文献

[1] 王宏伟, 孙文磊, 张小栋, 等. 基于优化VMD复合多尺度散布熵及LSTM的风力发电机齿轮箱故障诊断方法研究[J]. 太阳能学报, 2022, 43(4): 288-295.
WANG H W, SUN W L, ZHANG X D, et al.Fault diagnosis method of wind turbine’s gearbox based on composite multiscale dispersion entropy of optimised VMD and LSTM[J]. Acta energiae solaris sinica, 2022, 43(4): 288-295.
[2] LEI Y G, LIN J, ZUO M J, et al.Condition monitoring and fault diagnosis of planetary gearboxes: a review[J]. Measurement, 2014, 48: 292-305.
[3] WANG T Y, HAN Q K, CHU F L, et al.Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: a review[J]. Mechanical systems and signal processing, 2019, 126: 662-685.
[4] LIU D D, CUI L L, CHENG W D.Fault diagnosis of wind turbines under nonstationary conditions based on a novel tacho-less generalized demodulation[J]. Renewable energy, 2023, 206: 645-657.
[5] 徐硕, 邓艾东, 杨宏强, 等. 基于改进残差网络的旋转机械故障诊断[J]. 太阳能学报, 2023, 44(7): 409-418.
XU S, DENG A D, YANG H Q, et al.Rotating machinery fault diagnosis method based on improved residual neural network[J]. Acta energiae solaris sinica, 2023, 44(7): 409-418.
[6] 肖俊青, 金江涛, 李春, 等. 基于深度学习风力机齿轮箱的故障诊断[J]. 太阳能学报, 2023, 44(5): 302-309.
XIAO J Q, JIN J T, LI C, et al.Fault diagnosis of wind turbine gearbox based on deep learning[J]. Acta energiae solaris sinica, 2023, 44(5): 302-309.
[7] ZHANG L W, FAN Q, LIN J, et al.A nearly end-to-end deep learning approach to fault diagnosis of wind turbine gearboxes under nonstationary conditions[J]. Engineering applications of artificial intelligence, 2023, 119: 105735.
[8] YU X X, TANG B P, ZHANG K.Fault diagnosis of wind turbine gearbox using a novel method of fast deep graph convolutional networks[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 6502714.
[9] HUANG D J, ZHANG W A, GUO F H, et al.Wavelet packet decomposition-based multiscale CNN for fault diagnosis of wind turbine gearbox[J]. IEEE transactions on cybernetics, 2023, 53(1): 443-453.
[10] 胡兵兵, 唐嘉辉, 武吉梅, 等. 基于Triple GAN的滚动轴承故障诊断方法研究[J]. 噪声与振动控制, 2021, 41(4): 109-114, 220.
HU B B, TANG J H, WU J M, et al.Study on fault diagnosis method of rolling bearings based on Triple GAN[J]. Noise and vibration control, 2021, 41(4): 109-114, 220.
[11] XU F, PAN Z C, XIA R.E-commerce product review sentiment classification based on a naive Bayes continuous learning framework[J]. Information processing & management, 2020, 57(5): 102221.
[12] ZHANG C, LIU Z P, ZHANG L.Wind turbine blade bearing fault detection with Bayesian and adaptive kalman augmented lagrangian algorithm[J]. Renewable energy, 2022, 199: 1016-1023.
[13] 张露江, 张利, 杨要伟, 等. 基于改进贝叶斯网络的风机齿轮箱自动诊断策略研究[J]. 电力系统保护与控制, 2019, 47(19): 145-151.
ZHANG L J, ZHANG L, YANG Y W, et al.Research on automatic diagnosis strategy of wind turbine gearbox based on improved Bayesian network[J]. Power system protection and control, 2019, 47(19): 145-151.
[14] JIANG R, YU J, MAKIS V.Optimal Bayesian estimation and control scheme for gear shaft fault detection[J]. Computers & industrial engineering, 2012, 63(4): 754-762.
[15] TAO L F, SUN L L, WU Y D, et al.Multi-signal fusion diagnosis of gearbox based on minimum Bayesian risk reclassification and adaptive weighting[J]. Measurement, 2022, 187: 110358.
[16] 常淼, 沈艳霞. 基于贝叶斯优化CNN的风电轴承故障诊断策略[J]. 噪声与振动控制, 2021, 41(6): 77-83.
CHANG M, SHEN Y X.Fault diagnosis strategy of wind turbine bearings based on Bayesian optimized CNN[J]. Noise and vibration control, 2021, 41(6): 77-83.
[17] WANG X P, LING B W.Length reduction of singular spectrum analysis with guarantee exact perfect reconstruction via block sliding approach[J]. IEEE access, 2020, 8: 170311-170321.
[18] SHAO S Y, MCALEER S, YAN R Q, et al.Highly accurate machine fault diagnosis using deep transfer learning[J]. IEEE transactions on industrial informatics, 2019, 15(4): 2446-2455.
[19] ZHAO R, WANG D Z, YAN R Q, et al.Machine health monitoring using local feature-based gated recurrent unit networks[J]. IEEE transactions on industrial electronics, 2018, 65(2): 1539-1548.
[20] 闫绘宇, 张超. 基于Transformer和卷积神经网络的齿轮故障诊断方法[J]. 机电工程, 2024, 41(3): 409-417.
YAN H Y, ZHANG C.Gear fault diagnosis method based on Transformer and convolutional neural network[J]. Journal of mechanical & electrical engineering, 2024, 41(3): 409-417.
[21] LI S, JI J C, XU Y D, et al.IFD-MDCN: Multibranch denoising convolutional networks with improved flow direction strategy for intelligent fault diagnosis of rolling bearings under noisy conditions[J]. Reliability engineering & system safety, 2023, 237: 109387.

基金

国家自然科学基金(62063020; 61763028); 国家重点研发计划(2020YFB1713600); 甘肃省自然科学基金(20JR5RA463)

PDF(1417 KB)

Accesses

Citation

Detail

段落导航
相关文章

/