融合可见光与红外图像的光伏阵列缺陷检测

白晓静, 徐佳伟, 皮宇啸, 张文彪, 洪烽, 李佩哲

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 313-321.

PDF(2694 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2694 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 313-321. DOI: 10.19912/j.0254-0096.tynxb.2023-2151

融合可见光与红外图像的光伏阵列缺陷检测

  • 白晓静, 徐佳伟, 皮宇啸, 张文彪, 洪烽, 李佩哲
作者信息 +

DEFECT DETECTION OF PHOTOVOLTAIC ARRAYS BY FUSING VISIBLE AND INFRARED IMAGES

  • Bai Xiaojing, Xu Jiawei, Pi Yuxiao, Zhang Wenbiao, Hong Feng, Li Peizhe
Author information +
文章历史 +

摘要

为保证光伏发电稳定、高效和安全运行,需及时检测光伏阵列的运行状况并发现存在的缺陷。提出融合可见光与红外图像的光伏阵列缺陷检测方法,采用CenterNet进行可见光图像光伏组件中太阳电池检测,采用U-Net对红外图像高温区域进行分割,提出区域匹配模块对可见光与红外图像进行匹配,提出关键点(PoI)聚集模块和二次分类器实现关键点处特征向量的聚集以及太阳电池缺陷分类,最后结合可见光图像异物遮挡及红外图像温度异常识别缺陷太阳电池位置及类型。选择不同网络进行测试,提出的算法在较为轻量的CenterNet和U-Net网络上太阳电池检测的AP50-95值达到84.4%,异常温度区域分割的IoU达到89.7%,且单张检测时间约为38 ms,能以较快的速度完成异常太阳电池的检测。

Abstract

In order to ensure the efficient and safe operation of photovoltaic power generation, it is necessary to detect the operating status of photovoltaic arrays. A defect detection method of photovoltaic array based on the fusion of visible light and infrared images is proposed. CenterNet and U-Net are employed to detect solar cells in visible images and segment the high temperature region of infrared images, respectively. A region matching module is proposed to match visible and infrared images. Point of Interest (PoI) gathering module and secondary classifier are proposed to achieve the aggregation of feature vectors at key points and the classification of solar cells defects. Finally, defective solar cells are identified according to the visible and infrared image recognition results. Different networks are selected for testing. The value of AP50-95 of solar cells detected by the proposed algorithm on the relatively light CenterNet and U-Net networks reaches 84.4%, the IoU of abnormal temperature region segmentation reaches 89.7%, and the time cost of a single image is about 38ms. The results show that the proposed method can complete the detection of abnormal solar cells at a faster speed.

关键词

太阳电池 / 光伏阵列 / 目标检测 / 图像分割 / 红外图像 / 可见光图像

Key words

solar cells / PV arrays / object detection / image segmentation / infrared image / visible image

引用本文

导出引用
白晓静, 徐佳伟, 皮宇啸, 张文彪, 洪烽, 李佩哲. 融合可见光与红外图像的光伏阵列缺陷检测[J]. 太阳能学报. 2025, 46(4): 313-321 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2151
Bai Xiaojing, Xu Jiawei, Pi Yuxiao, Zhang Wenbiao, Hong Feng, Li Peizhe. DEFECT DETECTION OF PHOTOVOLTAIC ARRAYS BY FUSING VISIBLE AND INFRARED IMAGES[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 313-321 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2151
中图分类号: TK513.5   

参考文献

[1] 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(S1): 28-51.
HUANG Y H, DING T, LI Y T, et al.Summary of energy low-carbon technology under the background of carbon neutrality and its enlightenment to the development of new power system[J]. Proceedings of the CSEE, 2021, 41(S1): 28-51.
[2] 刘磊, 王冲, 赵树旺, 等. 基于机器视觉的太阳能电池片缺陷检测技术的研究[J]. 电子测量与仪器学报, 2018, 32(10): 47-52.
LIU L, WANG C, ZHAO S W, et al.Research on solar cells defect detection technology based on machine vision[J]. Journal of electronic measurement and instrumentation, 2018, 32(10): 47-52.
[3] 刘志清, 兰奇逊, 徐林, 等. 基于图像处理的光伏局部阴影区域分割方法[J]. 太阳能学报, 2023, 44(2): 391-398.
LIU Z Q, LAN Q X, XU L, et al.Partial shading region segmentation of photovoltaic systems based on image processing[J]. Acta energiae solaris sinica, 2023, 44(2): 391-398.
[4] 时亚涛, 戴芳, 杨畅民. 太阳能光伏电池缺陷检测[J]. 电子测量与仪器学报, 2020, 34(4): 157-164.
SHI Y T, DAI F, YANG C M.Defect detection of solar photovoltaic cell[J]. Journal of electronic measurement and instrumentation, 2020, 34(4): 157-164.
[5] 陶志勇, 于子佳, 林森. PSOSVM算法在太阳能电池板裂缝缺陷检测研究[J]. 电子测量与仪器学报, 2021, 35(1): 18-25.
TAO Z Y, YU Z J, LIN S.Research on crack defect detection of solar cell based on PSOSVM[J]. Journal of electronic measurement and instrumentation, 2021, 35(1): 18-25.
[6] 赵波, 廖坤, 邓春宇, 等. 基于卷积神经学习的光伏板积灰状态识别与分析[J]. 中国电机工程学报, 2019, 39(23): 6981-6989.
ZHAO B, LIAO K, DENG C Y, et al.Image convolutional neural learning based image recognition and analysis method for dust on photovoltaic panel[J]. Proceedings of the CSEE, 2019, 39(23): 6981-6989.
[7] 伊欣同, 单亚峰. 基于改进Faster R-CNN的光伏电池内部缺陷检测[J]. 电子测量与仪器学报, 2021, 35(1): 40-47.
YI X T, SHAN Y F.Photovoltaic cell internal defect detection based on improved Faster R-CNN[J]. Journal of electronic measurement and instrumentation, 2021, 35(1): 40-47.
[8] 周颖, 王如意, 袁梓桐, 等. 一种高效双路径注意力太阳电池缺陷检测网络[J]. 太阳能学报, 2023, 44(4): 407-413.
ZHOU Y, WANG R Y, YUAN Z T, et al.An efficient dual-path attention solar cell defect detection network[J]. Acta energiae solaris sinica, 2023, 44(4): 407-413.
[9] 孙海蓉, 周映杰, 张镇韬, 等. 基于改进自私羊群算法的光伏红外热图像热斑识别方法[J]. 中国电机工程学报, 2022, 42(24): 8942-8951.
SUN H R, ZHOU Y J, ZHANG Z T, et al.Hot spot recognition method of photovoltaic infrared thermal image based on improved selfish herd algorithm[J]. Proceedings of the CSEE, 2022, 42(24): 8942-8951.
[10] 任惠, 夏静, 卢锦玲, 等. 基于红外图像和改进MobileNet-V3的光伏组件故障诊断方法[J]. 太阳能学报, 2023, 44(8): 238-245.
REN H, XIA J, LU J L, et al.Research on fault diagnosis of photovoltaic modules based on infrared images and improved MobileNet-V3[J]. Acta energiae solaris sinica, 2023, 44(8): 238-245.
[11] SU B Y, CHEN H Y, LIU K, et al.RCAG-net: residual channelwise attention gate network for hot spot defect detection of photovoltaic farms[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 3510514.
[12] SUN T Y, XING H S, CAO S X, et al.A novel detection method for hot spots of photovoltaic (PV) panels using improved anchors and prediction heads of YOLOv5 network[J]. Energy reports, 2022, 8: 1219-1229.
[13] DE OLIVEIRA A K V, BRACHT M K, AGHAEI M, et al. Automatic fault detection of utility-scale photovoltaic solar generators applying aerial infrared thermography and orthomosaicking[J]. Solar energy, 2023, 252: 272-283.
[14] ZHAO S S, CHEN H Y, WANG C H, et al.SNCF-Net: Scale-aware neighborhood correlation feature network for hotspot defect detection of photovoltaic farms[J]. Measurement, 2023, 206: 112342.
[15] 王道累, 姚勇, 张世恒, 等. 基于红外热图像的光伏组件热斑深度学习检测方法[J]. 中国电机工程学报, 2023, 43(24): 9608-9616.
WANG D L, YAO Y, ZHANG S H, et al.Deep learning detection method of photovoltaic module hot spot based on infrared thermal image[J]. Proceedings of the CSEE, 2023, 43(24): 9608-9616.
[16] ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points[EB/OL].2019: 1904.07850. https://arxiv.org/abs/1904.07850v2.
[17] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016: 770-778.
[18] RONNEBERGER O, FISCHER P, BROX T.U-Net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Cham: Springer International Publishing, 2015: 234-241.
[19] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.

基金

中央高校基本科研业务费专项资金(2021MS016)

PDF(2694 KB)

Accesses

Citation

Detail

段落导航
相关文章

/