基于数据回归的光伏并网逆变器非线性特征补偿控制方法研究

李聪, 张琦, 梁欢, 杨惠, 孙向东

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 1-9.

PDF(2192 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2192 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 1-9. DOI: 10.19912/j.0254-0096.tynxb.2023-2153

基于数据回归的光伏并网逆变器非线性特征补偿控制方法研究

  • 李聪1, 张琦1,2, 梁欢2, 杨惠1, 孙向东1
作者信息 +

RESEARCH ON NONLINEAR FEATURE COMPENSATION CONTROL METHOD FOR PHOTOVOLTAIC GRID-CONNECTED INVERTERS BASED ON DATA REGRESSION

  • Li Cong1, Zhang Qi1,2, Liang Huan2, Yang Hui1, Sun Xiangdong1
Author information +
文章历史 +

摘要

针对死区等非线性特征对光伏并网逆变器电能质量的影响,该文借助数据驱动的补偿方法与传统控制相结合,研究一种并网逆变器动静态特征优化方法。首先利用重复控制器作为数据在线训练的依据,从机理上阐明数据来源和数据的有效性;其次利用近似线性回归方法获得数据模型,降低了数据驱动方法对存储空间的依赖度,保障了必要的补偿带宽,并解决了数据应用的可实现性问题;再将该模型作用于传统低阶控制器的补偿回路,使系统在具备足够稳定裕度的前提下实现良好的控制精度。数据相关性分析以及实验结果证明了该补偿方法具有可实现性和有效性。

Abstract

Addressing the impact of nonlinear characteristics such as dead-zones on the power quality of photovoltaic grid-connected inverters, this paper combines data-driven compensation methods with traditional control to investigate a dynamic and static characteristic optimization approach for grid-connected inverters. Firstly, a repetitive controller is utilized as the basis for online data training, elucidating the mechanism and validity of the data source. Secondly, an approximate linear regression method is employed to obtain a data model, reducing the dependence on storage space for data-driven methods, ensuring necessary compensation bandwidth, and solving the feasibility of data application. This model is then applied to the compensation loop of a traditional low-order controller, enabling the system to achieve precise control with sufficient stability margin. Data correlation analysis and experimental results demonstrate the feasibility and effectiveness of this compensation method.

关键词

光伏 / 并网逆变器 / 死区 / 非线性特征 / 数据驱动 / 在线训练

Key words

photovoltaic / dead zones / grid-connected inverter / nonlinear characteristics / data-driven / online training

引用本文

导出引用
李聪, 张琦, 梁欢, 杨惠, 孙向东. 基于数据回归的光伏并网逆变器非线性特征补偿控制方法研究[J]. 太阳能学报. 2024, 45(12): 1-9 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2153
Li Cong, Zhang Qi, Liang Huan, Yang Hui, Sun Xiangdong. RESEARCH ON NONLINEAR FEATURE COMPENSATION CONTROL METHOD FOR PHOTOVOLTAIC GRID-CONNECTED INVERTERS BASED ON DATA REGRESSION[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 1-9 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2153
中图分类号: TM464   

参考文献

[1] 赵铁英, 高宁, 杨杰, 等. 基于PI控制器有源阻尼的并网逆变器自适应改进策略[J]. 太阳能学报, 2023, 44(5): 152-161.
ZHAO T Y, GAO N, YANG J, et al.Adaptive improvement strategy for grid-connected inverter based on active damping of pi controllers[J]. Acta energiae solaris sinica, 2023, 44(5): 152-161.
[2] 杨兴武, 王楠楠, 王毅, 等. 基于阻抗分析的LCL型并网逆变器相角补偿控制[J]. 太阳能学报, 2020, 41(5): 312-318.
YANG X W, WANG N N, WANG Y, et al.Phase-angle compensation control of LCL-type grid-connected inverter based on impendance analysis[J]. Acta energiae solaris sinica, 2020, 41(5): 312-318.
[3] SAFAMEHR H, NAJAFABADI T A, SALMASI F R.Adaptive control of grid-connected inverters with nonlinear LC filters[J]. IEEE transactions on power electronics, 2023, 38(2): 1562-1570.
[4] 罗辞勇, 王英豪, 王卫耀, 等. 单相特定谐波消除脉宽调制高频逆变器的死区补偿策略[J]. 电工技术学报, 2017, 32(14): 155-164.
LUO C Y, WANG Y H, WANG W Y, et al.Study of dead-time compensation strategy in selective harmonic elimination PWM inverter[J]. Transactions of China Electrotechnical Society, 2017, 32(14): 155-164.
[5] WANG D F, WANG M Y, SHEN Y L, et al.Online feedback dead time compensation strategy for three-level T-type inverters[J]. IEEE transactions on industrial electronics, 2020, 67(9): 7260-7268.
[6] SHEN Z W, JIANG D.Dead-time effect compensation method based on current ripple prediction for voltage-source inverters[J]. IEEE transactions on power electronics, 2019, 34(1): 971-983.
[7] SEYYEDZADEH S M, SHOULAIE A.Accurate modeling of the nonlinear characteristic of a voltage source inverter for better performance in near zero currents[J]. IEEE transactions on industrial electronics, 2019, 66(1): 71-78.
[8] SHANG C Y, YANG M, LONG J, et al.An accurate VSI nonlinearity modeling and compensation method accounting for DC-link voltage variation based on LUT[J]. IEEE transactions on industrial electronics, 2022, 69(9): 8645-8655.
[9] PELLEGRINO G, BOJOI R I, GUGLIELMI P, et al.Accurate inverter error compensation and related self-commissioning scheme in sensorless induction motor drives[J]. IEEE transactions on industry applications, 2010, 46(5): 1970-1978.
[10] TANG Z Y, AKIN B.Suppression of dead-time distortion through revised repetitive controller in PMSM drives[J]. IEEE transactions on energy conversion, 2017, 32(3): 918-930.
[11] BEN-BRAHIM L.On the compensation of dead time and zero-current crossing for a PWM-inverter-controlled AC servo drive[J]. IEEE transactions on industrial electronics, 2004, 51(5): 1113-1117.
[12] 解宝, 周林, 马卫, 等. 光伏并网逆变器的高增益数字PI控制器设计[J]. 太阳能学报, 2019, 40(9): 2586-2593.
XIE B, ZHOU L, MA W, et al.Design of high gain digital PI controller for PV grid-connected inverter[J]. Acta energiae solaris sinica, 2019, 40(9): 2586-2593.
[13] LIN B W, PENG L, LIU X M.Selective pole placement and cancellation for proportional-resonant control design used in voltage source inverter[J]. IEEE transactions on power electronics, 2022, 37(8): 8921-8934.
[14] KIM S Y, LEE W, RHO M S, et al.Effective dead-time compensation using a simple vectorial disturbance estimator in PMSM drives[J]. IEEE transactions on industrial electronics, 2010, 57(5): 1609-1614.
[15] 韩坤, 孙晓, 刘秉, 等. 一种永磁同步电机矢量控制SVPWM死区效应在线补偿方法[J]. 中国电机工程学报, 2018, 38(2): 620-627, 692.
HAN K, SUN X, LIU B, et al.Dead-time on-line compensation scheme of SVPWM for permanent magnet synchronous motor drive system with vector control[J]. Proceedings of the CSEE, 2018, 38(2): 620-627, 692.
[16] YE J, LIU L G, XU J B, et al.Frequency adaptive proportional-repetitive control for grid-connected inverters[J]. IEEE transactions on industrial electronics, 2021, 68(9): 7965-7974.
[17] XIE C, ZHAO X, SAVAGHEBI M, et al.Multirate fractional-order repetitive control of shunt active power filter suitable for microgrid applications[J]. IEEE journal of emerging and selected topics in power electronics, 2017, 5(2): 809-819.
[18] 洪剑峰, 张兴, 曹仁贤, 等. 三电平并网逆变器基于有限集模型预测控制的新型谐波抑制策略[J]. 太阳能学报, 2022, 43(4): 184-190.
HONG J F, ZHANG X, CAO R X, et al.Novel harmonic suppression strategy for three-level grid-connected inverter based on finite control set model predictive control[J]. Acta energiae solaris sinica, 2022, 43(4): 184-190.
[19] MORA A, CARDENAS-DOBSON R, AGUILERA R P, et al.Computationally efficient cascaded optimal switching sequence MPC for grid-connected three-level NPC converters[J]. IEEE transactions on power electronics, 2019, 34(12): 12464-12475.
[20] NOVAK M, XIE H T, DRAGICEVIC T, et al.Optimal cost function parameter design in predictive torque control (PTC) using artificial neural networks (ANN)[J]. IEEE transactions on industrial electronics, 2021, 68(8): 7309-7319.
[21] ZHANG X G, CHENG Y, ZHAO Z H, et al.Optimized model predictive control with dead-time voltage vector for PMSM drives[J]. IEEE transactions on power electronics, 2021, 36(3): 3149-3158.
[22] WU Z Q, DING K, YANG Z J, et al.Analytical prediction and minimization of deadtime-related harmonics in permanent magnet synchronous motor[J]. IEEE transactions on industrial electronics, 2021, 68(9): 7736-7746.
[23] 江法洋, 郑丽君, 宋建成, 等. LCL型并网逆变器重复双闭环控制方法[J]. 中国电机工程学报, 2017, 37(10): 2944-2954.
JIANG F Y, ZHENG L J, SONG J C, et al.Repetitive-based dual closed-loop control approach for grid-connected inverters with LCL filters[J]. Proceedings of the CSEE, 2017, 37(10): 2944-2954.
[24] ZHAO Q S, YE Y Q.A PIMR-type repetitive control for a grid-tied inverter: structure, analysis, and design[J]. IEEE transactions on power electronics, 2018, 33(3): 2730-2739.
[25] BENESTY J, CHEN J, HUANG Y.On the importance of the pearson correlation coefficient in noise reduction[J]. IEEE transactions on audio speech and language processing, 2008, 16(4):757-765.
[26] BISHOP C M.Pattern recognition and machine learning[M]. New York: Springer, 2006: 46-48.

基金

国家重点研发计划“政府间国际科技创新合作”重点专项(2022YFE0196300); 陕西省教育厅科学研究计划地方专项(23JE031); 西安理工大学博士启动基金(119-451121001)

PDF(2192 KB)

Accesses

Citation

Detail

段落导航
相关文章

/