四开关Buck-Boost变换器的变频ZVS控制策略

刘述喜, 邓瑞祥, 郭强

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 210-219.

PDF(2313 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2313 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 210-219. DOI: 10.19912/j.0254-0096.tynxb.2023-2165

四开关Buck-Boost变换器的变频ZVS控制策略

  • 刘述喜, 邓瑞祥, 郭强
作者信息 +

VARIABLE FREQUENCY ZERO VOLTAGE SWITCHING CONTROL STRATEGY FOR FOUR-SWITCH BUCK-BOOST CONVERTER

  • Liu Shuxi, Deng Ruixiang, Guo Qiang
Author information +
文章历史 +

摘要

为实现四开关Buck-Boost变换器的高效率,需通过降低电感电流有效值减小功率器件的导通损耗。分析四边电感电流控制,可发现电感电流有效值在轻载条件下可达到最小,但在重载条件下难以保持。为此,提出一种四开关 Buck-Boost变换器的低电感电流有效值变频软开关控制策略,以满足重载需求。同时,考虑输入输出电压相近时电感电流变化率较小,优化时间段的选择,限制变频范围过大,以此降低硬件设计的难度。在实验室中研制了输入电压为10~40 V、输出电压为15~35 V的实验样机,并通过实验验证所提出控制策略的可行性和优越性。

Abstract

The FSBB converter to achieve high efficiency, need by reducing the inductor current root mean square (RMS) and the conduction loss of power devices. It is found that the RMS of the inductor current can reach the minimum under the condition of light load, but can not be maintained under the condition of heavy load. For this, put forward a kind of FSBB converter low inductor current RMS control strategy, in order to satisfy the demands of overloading by a variable frequency ZVS control. At the same time, considering inductor current rate of similar input and output voltage is small, can optimize the selection of the time to limit variable frequency range that reduce the difficulty of the hardware design.An experimental prototype with an input voltage of 10-40 V and an output voltage of 15-35 V has been developed in the laboratory, and the feasibility and superiority of the proposed control strategy have been verified by experiments.

关键词

DC-DC变换器 / 零电压开关 / 数字控制系统 / 四开关Buck-Boost变换器 / 四边电感电流

Key words

DC-DC converters / zero voltage switching / digital control system / four-switch Buck-Boost converter / quadrilateral inductor current

引用本文

导出引用
刘述喜, 邓瑞祥, 郭强. 四开关Buck-Boost变换器的变频ZVS控制策略[J]. 太阳能学报. 2025, 46(4): 210-219 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2165
Liu Shuxi, Deng Ruixiang, Guo Qiang. VARIABLE FREQUENCY ZERO VOLTAGE SWITCHING CONTROL STRATEGY FOR FOUR-SWITCH BUCK-BOOST CONVERTER[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 210-219 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2165
中图分类号: TM46   

参考文献

[1] 黎博, 陈民铀, 钟海旺, 等. 高比例可再生能源新型电力系统长期规划综述[J]. 中国电机工程学报, 2023, 43(2): 555-581.
LI B, CHEN M Y, ZHONG H W, et al.A review of long-term planning of new power systems with large share of renewable energy[J]. Proceedings of the CSEE, 2023, 43(2): 555-581.
[2] 申泽渊, 赵海波, 李伟康, 等. 面向偏远地区低碳发展的风-光-沼-储综合能源微网多目标规划方法[J]. 太阳能学报, 2023, 44(7): 71-79.
SHEN Z Y, ZHAO H B, LI W K, et al.Multi-objective optimization method for low-carbon development of wind-solar-biogas-storage integrated energy microgrids in remote regions[J]. Acta energiae solaris sinica, 2023, 44(7): 71-79.
[3] HAEGEL N M, KURTZ S R.Global progress toward renewable electricity: tracking the role of solar[J]. IEEE journal of photovoltaics, 2021, 11(6): 1335-1342.
[4] 张文伟, 王维庆, 王海云, 等. 考虑碳捕集技术的风光-富氧燃煤发电系统容量优化配置[J]. 电力系统自动化, 2023, 47(13): 176-189.
ZHANG W W, WANG W Q, WANG H Y, et al.Optimal capacity configuration for wind power-photovoltaic and oxygen-enriched coal-fired power generation system considering carbon capture technology[J]. Automation of electric power systems, 2023, 47(13): 176-189.
[5] CHEN X, PISE A A, ELMES J, et al.Ultra-highly efficient low-power bidirectional cascaded buck-boost converter for portable PV-battery-devices applications[J]. IEEE transactions on industry applications, 2019, 55(4): 3989-4000.
[6] WENG X, XIAO X, HE W B, et al.Comprehensive comparison and analysis of non-inverting buck boost and conventional buck boost converters[J]. The journal of engineering, 2019, 2019(16): 3030-3034.
[7] WAFFLER S, KOLAR J W.A novel low-loss modulation strategy for high-power bidirectional buck+boost converters[J]. IEEE transactions on power electronics, 2009, 24(6): 1589-1599.
[8] 贾磊磊, 孙孝峰, 潘尧, 等. 非反向Buck-Boost变换器的多模式定频双向ZVS控制策略[J]. 太阳能学报, 2022, 43(12): 520-530.
JIA L L, SUN X F, PAN Y, et al.Multimode constant frequency bidirectional ZVS control strategy for noninverting buck-boost converter[J]. Acta energiae solaris sinica, 2022, 43(12): 520-530.
[9] BAI Y N, HU S D, YANG Z, et al.Model predictive control for four-switch buck-boost converter based on tuning-free cost function with smooth mode transition[J]. IEEE journal of emerging and selected topics in power electronics, 2022, 10(6): 6607-6618.
[10] GUO Z Q, MAO T H.Efficiency optimization and control strategy of four-switch buck-boost converter for wide conversion ratio[J]. IEEE transactions on power electronics, 2023, 38(9): 10702-10715.
[11] 吴岩, 王玮, 曾国宏, 等. 四开关Buck-Boost变换器的多模式模型预测控制策略[J]. 电工技术学报, 2022, 37(10): 2572-2583.
WU Y, WANG W, ZENG G H, et al.Multi-mode model predictive control strategy for the four-switch buck-boost converter[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2572-2583.
[12] LI X, LIU Y S, XUE Y S.Four-switch buck-boost converter based on model predictive control with smooth mode transition capability[J]. IEEE transactions on industrial electronics, 2021, 68(10): 9058-9069.
[13] 方天治, 王愿, 张惠丽, 等. 四管Buck-Boost变换器的改进型三模式变频软开关控制策略[J]. 电工技术学报, 2021, 36(21): 4544-4557.
FANG T Z, WANG Y, ZHANG H L, et al.An improved three-mode variable frequency control strategy based on four-switch buck-boost converter[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4544-4557.
[14] WENG X, ZHAO Z M, CHEN K N, et al.A nonlinear control method for bumpless mode transition in noninverting buck-boost converter[J]. IEEE transactions on power electronics, 2021, 36(2): 2166-2178.
[15] LIU F M, XU J P, CHEN Z G, et al.A multi-frequency PCCM ZVS modulation scheme for optimizing overall efficiency of four-switch buck-boost converter with wide input and output voltage ranges[J]. IEEE transactions on industrial electronics, 2023, 70(12): 12431-12441.
[16] WEN Z L, TANG W M, XU D G.Quasi-peak current control strategy for four-switch buck-boost converter[J]. IEEE transactions on power electronics, 2023, 38(10): 12607-12619.
[17] LIU F M, XU J P, CHEN Z G, et al.A constant frequency ZVS modulation scheme for four-switch buck-boost converter with wide input and output voltage ranges and reduced inductor current[J]. IEEE transactions on industrial electronics, 2022, 70(5): 4931-4941.
[18] ZHOU Z J, LI H Y, WU X K.A constant frequency ZVS control system for the four-switch buck-boost DC-DC converter with reduced inductor current[J]. IEEE transactions on power electronics, 2018, 34(7): 5996-6003.
[19] TIAN L, WU X K, JIANG C R, et al.A simplified real-time digital control scheme for ZVS four-switch buck-boost with low inductor current[J]. IEEE transactions on industrial electronics, 2021, 69(8): 7920-7929.
[20] LIU Q, QIAN Q S, ZHENG M, et al.An improved quadrangle control method for four-switch buck-boost converter with reduced loss and decoupling strategy[J]. IEEE transactions on power electronics, 2021, 36(9): 10827-10841.
[21] FANG J, RUAN X B, HUANG X Z, et al.A PWM plus phase-shift control for four-switch buck-boost converter to achieve ZVS in full input voltage and load range[J]. IEEE transactions on industrial electronics, 2021, 69(12): 12698-12709.
[22] 贾磊磊, 孙孝峰, 潘尧, 等. 非反向Buck-Boost变换器的三段式ZVS控制策略[J]. 太阳能学报, 2023, 44(11): 110-119.
JIA L L, SUN X F, PAN Y, et al.Three-segment ZVS control strategy for noninverting buck-boost converter[J]. Acta energiae solaris sinica, 2023, 44(11): 110-119.
[23] 李山, 宋立风, 章治国, 等. 基于变拓扑的超宽输入范围直流变换器及调制策略[J]. 电工技术学报, 2019, 34(2): 326-336.
LI S, SONG L F, ZHANG Z G, et al.Wide input range DC converter based on variable topology and its modulation strategy[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 326-336.

基金

重庆市教委科学技术研究计划(KJQN202001128)

PDF(2313 KB)

Accesses

Citation

Detail

段落导航
相关文章

/