分别在钙钛矿前驱体中添加一系列的反溶剂乙酸乙酯(EA)和乙腈(ACN),制备出不同形貌的CsPbBr3薄膜,探究薄膜质量与太阳电池性能的内在联系。结果表明,在大气制备环境中,反溶剂有助于CsPbBr3晶粒的生长,薄膜表面缺陷明显减少,太阳电池各性能参数(短路电流密度、开路电压以及填充因子)均有所提升,尤其是添加乙腈(V(PbBr2/DMF)∶V(ACN)=10∶1)后,光电转换效率(PCE)从3.16%提高到7.10%。
Abstract
In this paper, a series of antisolvent ethyl acetate (EA) and acetonitrile (ACN) were added to the perovskite precursor to prepare CsPbBr3 thin films with different morphologies, and the effect of thin film quality on the performance of perovskite solar cells was studied. Research results show that in the atmosphere preparation environment, the antisolvent can promote the growth of CsPbBr3 grain, the surface defects of the film are significantly reduced, and the short circuit current density, open circuit voltage and filling factor of the prepared FTO/TiO2/CsPbBr3/Carbon structure solar cells are improved. In particular, when acetonitrile (V(PbBr2/DMF)∶V(ACN) is 10∶1) was added, the solar cell photoelectric conversion efficiency (PCE) was increased from 3.16% to 7.10%.
关键词
钙钛矿太阳电池 /
太阳电池效率 /
薄膜制备 /
缺陷 /
反溶剂 /
CsPbBr3
Key words
perovskite solar cells /
solar cell efficiency /
film preparation /
defect /
antisolvent /
CsPbBr3
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WEN Z R, LIANG C, LI S W, et al.High-quality van der waals epitaxial CsPbBr3 film grown on monolayer graphene covered TiO2 for high-performance solar cells[J]. Energy & environmental materials, 2023: e12680.
[2] WANG P Y, ZHANG X W, ZHOU Y Q, et al.Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells[J]. Nature communications, 2018, 9: 2225.
[3] WANG Y, ZHANG T Y, KAN M, et al.Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics[J]. Journal of the American Chemical Society, 2018, 140(39): 12345-12348.
[4] LIU X, LI J, WANG X, et al.Inorganic lead-based halide perovskites: from fundamental properties to photovoltaic applications[J]. Materials today, 2022, 61: 191-217.
[5] 孟文兵, 马海霞. 用于制备高效钙钛矿太阳能电池的反溶剂研究进展[J]. 安徽化工, 2023, 49(5): 9-16, 21.
MENG W B, MA H X.Research progress of anti-solvent for preparation of high efficiency perovskite solar cells[J]. Anhui chemical industry, 2023, 49(5): 9-16, 21.
[6] SUTTON R J, EPERON G E, MIRANDA L, et al.Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells[J]. Advanced energy materials, 2016, 6(8): 1502458.
[7] BEAL R E, SLOTCAVAGE D J, LEIJTENS T, et al.Cesium lead halide perovskites with improved stability for tandem solar cells[J]. The journal of physical chemistry letters, 2016, 7(5): 746-751.
[8] YIN G N, ZHAO H, JIANG H, et al.Precursor engineering for all-inorganic CsPbI2Br perovskite solar cells with 14.78% efficiency[J]. Advanced functional materials, 2018, 28(39): 1803269.
[9] MENG Q X, FENG J Y, HUANG H T, et al.Simultaneous optimization of phase and morphology of CsPbBr3 films via controllable Ostwald ripening by ethylene glycol monomethylether/isopropanol Bi-solvent engineering[J]. Advanced engineering materials, 2020, 22(8): 2000162.
[10] HE Q C, ZHANG H M, HAN S Q, et al.Improvement of green antisolvent-isopropanol and additive-thiourea on carbon based CsPbIBr2 perovskite solar cells[J]. Materials science in semiconductor processing, 2022, 150: 106940.
[11] WANG S B, CAO F X, SUN W H, et al.A green Bi-Solvent system for processing high-quality CsPbBr3 films in efficient all-inorganic perovskite solar cells[J]. Materials today physics, 2022, 22: 100614.
[12] DONG C, HAN X X, LI W H, et al.Anti-solvent assisted multi-step deposition for efficient and stable carbon-based CsPbI2Br all-inorganic perovskite solar cell[J]. Nano energy, 2019, 59: 553-559
[13] HAN B Q, ZHANG L, CAO Y W, et al.Antisolvent engineering on low-temperature processed CsPbI3 inorganic perovskites for improved performances of solar cells[J]. Nanotechnology, 2021, 32(18): 185402.
[14] 张万年, 李志义, 魏炜, 等. 绿色混合反溶剂对钙钛矿薄膜形貌的影响[J]. 现代化工, 2023, 43(S2): 238-242.
ZHANG W N, LI Z Y, WEI W, et al.Effect of green mixed antisolvent on morphology of perovskite thin films[J]. Modern chemical industry, 2023, 43(S2): 238-242.
[15] ABATE S Y, QI Y F, ZHANG Q Q, et al.Eco-friendly solvent engineered CsPbI2.77Br0.23 ink for large-area and scalable high performance perovskite solar cells[J]. Advanced materials, 2023: 2310279.
[16] 李毅, 朱俊, 张旭辉, 等. CH3NH3PbI3形貌对钙钛矿电池性能的影响研究[J]. 太阳能学报, 2019, 40(9): 2630-2635.
LI Y, ZHU J, ZHANG X H, et al.Investigation on morphology-photovoltaic property correlation in perovskite solar cells[J]. Acta energiae solaris sinica, 2019, 40(9): 2630-2635.
[17] 周生厚, 章文峰, 江雨童, 等. 加热和水处理共同调控PbI2薄膜形貌及其在钙钛矿太阳电池中的应用研究[J]. 太阳能学报, 2022, 43(9): 78-82.
ZHOU S H, ZHANG W F, JIANG Y T, et al.Heating and water treatment jointly control morphology of PbI2 thin film and its application in perovskite solar cells[J]. Acta energiae solaris sinica, 2022, 43(9): 78-82.
[18] AN Q Z, PAULUS F, BECKER-KOCH D, et al.Small grains as recombination hot spots in perovskite solar cells[J]. Matter, 2021, 4(5): 1683-1701.
[19] XIANG Z W, MEI X, YAN J J, et al.Enhancing performance and stability of CsPbBr3 perovskite solar cells through environmentally friendly binary solvent fabrication[J]. Journal of materials science: materials in electronics, 2023, 34(31): 2101.
基金
国家自然科学基金(21701041); 太阳能高效利用湖北省协同创新中心开放研究基金(HBSKFQN2017001); 湖北工业大学博士启动基金(BSQD20170101)