基于GGD-EfficientNet和声纹识别的风力发电机齿轮箱故障诊断

廖力达, 陈伟克, 罗晓, 舒王咏, 张芝铭, 代军

太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 570-578.

PDF(1750 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1750 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (4) : 570-578. DOI: 10.19912/j.0254-0096.tynxb.2023-2171

基于GGD-EfficientNet和声纹识别的风力发电机齿轮箱故障诊断

  • 廖力达, 陈伟克, 罗晓, 舒王咏, 张芝铭, 代军
作者信息 +

FAULT DIAGNOSIS OF WIND TURBINE GEARBOXES BASED ON GGD-EFFICIENTNET AND VOICEPRINT RECOGNITION

  • Liao Lida, Chen Weike, Luo Xiao, Shu Wangyong, Zhang Zhiming, Dai Jun
Author information +
文章历史 +

摘要

针对风力发电机齿轮箱齿轮故障时的噪声提出一种基于分组全局上下文网络(GE-GCNet)与深度可分离卷积(DSCConv)结合的效率神经网络(GGD-EfficientNet)和声纹识别的齿轮箱故障诊断方法。首先通过实验获取齿轮箱故障齿轮的噪声信号,并根据齿轮状态分为6类。然后,使用Log-Mel谱的方法提取噪声信号语谱图。考虑到效率卷积神经网络(EfficientNet)对齿轮故障语谱图特征提取能力不足等缺点,在EfficientNet的基础上,结合分组卷积改进的GE-GCNet和DSCConv,提出一种高性能的齿轮故障诊断模型GGD-EfficientNet。实验表明:所提方法能在齿轮箱故障齿轮语谱图数据集下准确率达到99.7%。所提模型能从数据集中对故障类型进行有效分类,可有效帮助诊断齿轮箱中齿轮故障。

Abstract

This study presents a novel approach for diagnosing gearbox faults based on noise generated by faulty gears, utilizing a high-performance neural network called Grouped GCNet and Depthwise Separable Convolution with EfficientNet (GGD-EfficientNet). Noise signals from faulty gears were experimentally acquired and categorized into six distinct types according to their operational states. the Log-Mel spectral method was employed to extract the spectrograms of these noise signals. Recognizing the limitations of EfficientNet in feature extraction from gearbox fault spectrograms, we enhanced its performance by integrating the Group-based Enhanced Global Context Network (GE-GCNet) and Depthwise Separable Convolution (DSCConv). Experimental results demonstrate that the proposed GGD-EfficientNet achieves an impressive accuracy of 99.7% on the spectrogram dataset of faulty gears, effectively classifying fault types and providing valuable insights for gearbox fault diagnosis.

关键词

风力发电机 / 齿轮 / 故障检测 / GGD-EfficientNet / 声纹识别

Key words

wind turbines / gears / fault detection / GGD-EfficientNet / voiceprint recognition

引用本文

导出引用
廖力达, 陈伟克, 罗晓, 舒王咏, 张芝铭, 代军. 基于GGD-EfficientNet和声纹识别的风力发电机齿轮箱故障诊断[J]. 太阳能学报. 2025, 46(4): 570-578 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2171
Liao Lida, Chen Weike, Luo Xiao, Shu Wangyong, Zhang Zhiming, Dai Jun. FAULT DIAGNOSIS OF WIND TURBINE GEARBOXES BASED ON GGD-EFFICIENTNET AND VOICEPRINT RECOGNITION[J]. Acta Energiae Solaris Sinica. 2025, 46(4): 570-578 https://doi.org/10.19912/j.0254-0096.tynxb.2023-2171
中图分类号: U226.8+1   

参考文献

[1] KUSIAK A, LI W Y.The prediction and diagnosis of wind turbine faults[J]. Renewable energy, 2011, 36(1): 16-23.
[2] SALAMEH J P, CAUET S, ETIEN E, et al.Gearbox condition monitoring in wind turbines: a review[J]. Mechanical systems and signal processing, 2018, 111: 251-264.
[3] WANG J Y, CHEN T J, LI J G, et al.Research on the composite fault diagnosis of gearbox based on local mean decomposition and Hilbert demodulation[J]. Measurement and control, 2023, 56(7/8): 1350-1358.
[4] 张亢, 麻云娇, 袁志文, 等. MPA-MMD方法在变转速齿轮箱振动信号特征提取中的应用[J]. 振动与冲击, 2023, 42(24): 127-135.
ZHANG K, MA Y J, YUAN Z W, et al.Application of MPA-MMD method for gearbox vibration signal feature extraction under variable rotating speed condition[J]. Journal of vibration and shock, 2023, 42(24): 127-135.
[5] FERRANDO CHACON J L, ANDICOBERRY E A, KAPPATOS V, et al. An experimental study on the applicability of acoustic emission for wind turbine gearbox health diagnosis[J]. Journal of low frequency noise, vibration and active control, 2016, 35(1): 64-76.
[6] 朱静, 邓艾东, 李晶, 等. 基于改进EEMD和声发射技术的行星齿轮箱故障诊断研究[J]. 噪声与振动控制, 2018, 38(S2): 657-660.
ZHU J, DENG A D, LI J, et al.Research on fault diagnosis of planetary gearbox based on improved EEMD and acoustic emission technology[J]. Noise and vibration control, 2018, 38(S2): 657-660.
[7] LI X Y, LI J L, HE D, et al.Gear pitting fault diagnosis using raw acoustic emission signal based on deep learning[J]. Eksploatacja i niezawodność-maintenance and reliability, 2019, 21(3): 403-410.
[8] 郭鹏, David Infield, 杨锡运. 风电机组齿轮箱温度趋势状态监测及分析方法[J]. 中国电机工程学报, 2011, 31(32): 129-136.
GUO P, INFIELD D, YANG X Y.Wind turbine gearbox condition monitoring using temperature trend analysis[J]. Proceedings of the CSEE, 2011, 31(32): 129-136.
[9] ZENG X J, YANG M, BO Y F.Gearbox oil temperature anomaly detection for wind turbine based on sparse Bayesian probability estimation[J]. International journal of electrical power & energy systems, 2020, 123: 106233.
[10] 曹洁, 张玉林, 王进花, 等. 基于VMD和SVPSO-BP的滚动轴承故障诊断[J]. 太阳能学报, 2022, 43(9): 294-301.
CAO J, ZHANG Y L, WANG J H, et al.Fault diagnosis of rolling bearing based on VMD and SVPSO-BP[J]. Acta energiae solaris sinica, 2022, 43(9): 294-301.
[11] 景彤梅, 齐咏生, 刘利强, 等. 基于KECA-GRNN的风电机组齿轮箱状态监测与健康评估[J]. 太阳能学报, 2021, 42(6): 400-408.
JING T M, QI Y S, LIU L Q, et al.Condition monitoring and health assessment of wind turbine gearbox based on KECA-GRNN[J]. Acta energiae solaris sinica, 2021, 42(6): 400-408.
[12] 徐硕, 邓艾东, 杨宏强, 等. 基于改进残差网络的旋转机械故障诊断[J]. 太阳能学报, 2023, 44(7): 409-418.
XU S, DENG A D, YANG H Q, et al.Rotating machinery fault diagnosis method based on improved residual neural network[J]. Acta energiae solaris sinica, 2023, 44(7): 409-418.
[13] 孙文卿, 邓艾东, 邓敏强, 等. 基于模型融合的风电机组齿轮箱故障诊断[J]. 太阳能学报, 2022, 43(1): 64-72.
SUN W Q, DENG A D, DENG M Q, et al.Fault diagnosis of wind turbine gearbox based on model fusion[J]. Acta energiae solaris sinica, 2022, 43(1): 64-72.
[14] 邹宜金, 连应华, 黄新宇, 等. 基于声纹的高泛化性风机叶片异常检测方法研究[J]. 电子科技大学学报, 2021, 50(5): 795-800.
ZOU Y J, LIAN Y H, HUANG X Y, et al.High generalization in anomaly detection of wind turbine generator based on voiceprint[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(5): 795-800.
[15] 韩帅, 高飞, 王博闻, 等. 基于Mel频谱滤波和CNN的有载分接开关可听声辨识方法[J]. 电网技术, 2021, 45(9): 3609-3617.
HAN S, GAO F, WANG B W, et al.Audible sound identification of on load tap changer based on MEL spectrum filtering and CNN[J]. Power system technology, 2021, 45(9): 3609-3617.
[16] 刁冠勋, 唐懿颖, 张阳, 等. 基于掩码自编码技术的变压器故障声纹诊断方法研究[J]. 噪声与振动控制, 2023, 43(6): 142-148.
DIAO G X, TANG Y Y, ZHANG Y, et al.Research on voiceprint diagnosis method of transformer faults based on mask self-coding technology[J]. Noise and vibration control, 2023, 43(6): 142-148.
[17] SHAN S J, LIU J B, WU S G, et al.A motor bearing fault voiceprint recognition method based on Mel-CNN model[J]. Measurement, 2023, 207: 112408.
[18] LIU W Y.A review on wind turbine noise mechanism and de-noising techniques[J]. Renewable energy, 2017, 108: 311-320.
[19] HASAN R, RAHMAN S.Speaker identification using mel frequency cepstral coefficients[C]//Proceedings of the 3rd International Conference on Electrical and Computer Engineering. Dhaka, Bangladesh, 2004:565-568.
[20] GUPTA M, BHARTI S S, AGARWAL S.Gender-based speaker recognition from speech signals using GMM model[J]. Modern physics letters B, 2019, 33(35): 1950438.
[21] NWE T L, FOO S W, DE SILVA L C. Speech emotion recognition using hidden Markov models[J]. Speech communication, 2003, 41(4): 603-623.
[22] TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL].2019: 1905.11946.https://arxiv.org/abs/1905.11946v5.
[23] CAO Y, XU J R, LIN S, et al.GCNet: non-local networks meet squeeze-excitation networks and beyond[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Seoul, Korea, 2019: 1971-1980.
[24] 魏亮, 朱婷婷, 过奕任, 等. 基于DAR-CapsNet的地基云图云分类[J]. 太阳能学报, 2023, 44(11): 189-195.
WEI L, ZHU T T, GUO Y R, et al.Cloud classification of ground-based cloud images based on DAR-CapsNet[J]. Acta energiae solaris sinica, 2023, 44(11): 189-195.
[25] RADOSAVOVIC I, KOSARAJU R P, GIRSHICK R, et al.Designing network design spaces[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA, 2020: 10425-10433.
[26] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[27] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, NV, USA, 2016: 770-778.
[28] SANDLER M, HOWARD A, ZHU M L, et al.MobileNetV2: inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 4510-4520.
[29] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].2015: 1409.1556.https://arxiv.org/abs/1409.1556v6.
[30] MEHTA S, RASTEGARI M. MobileViT: light-weight, general-purpose,mobile-friendly vision transformer[EB/OL].2021: 2110.02178.https://arxiv.org/abs/2110.02178v2.

基金

湖南省自然科学基金(2024JJ9181)

PDF(1750 KB)

Accesses

Citation

Detail

段落导航
相关文章

/