为进一步提高离网型风光制氢系统的经济性以及运行稳定性,提出离网型风光氢储系统容量配置与控制优化方法。首先,结合风力机、光伏组件、碱性电解槽和锂电池的运行特性建立容量配置模型;以系统收益最大为优化目标,采用灰狼优化算法(GWO)进行求解。其次,提出基于区间最值的灰狼算法优化长短期记忆网络(GWO-LSTM)组合预测模型,并以此为基础开展系统运行控制策略研究。最后,针对张家口崇礼风电制氢示范工程项目数据进行算例分析,结果表明采用灰狼优化算法对风光氢储系统进行容量配置能增加系统收益,同时验证了提出的系统控制策略能保证系统平稳运行。
Abstract
A system capacity configuration and control optimization method is proposed in this paper to improve the economy and operational stability of the off-grid wind-solar hydrogen production system. Firstly, a capacity configuration model is constructed based on the operating characteristics of wind turbines, photovoltaic modules, alkaline electrolyzers and lithium batteries. Taking the maximum revenue of the system as the optimization objective, the grey wolf optimizer (GWO) algorithm is adopted to solve the energy allocation model. Secondly, a combined long short-term memory GWO-LSTM prediction model based on interval extremum is realized and in-depth research on the control strategy for system operation is conducted. Finally, using the data of the wind power hydrogen production demonstration project in Zhangjiakou for case analysis, the results show that the GWO algorithm to configure the capacity of the wind solar hydrogen storage system could increase system revenue, and the proposed control strategy to ensure the smooth operation of the system is also verified.
关键词
风电 /
光伏 /
储能 /
制氢 /
容量配置 /
风功率预测 /
灰狼优化算法
Key words
wind power /
PV power /
energy storage /
hydrogen production /
capacity configuration /
wind power prediction /
grey wolf optimization algorithm
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9): 48-55.
CHEN J P, HU Z J, CHEN Y G, et al.Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J]. Electric power automation equipment, 2021, 41(9): 48-55.
[2] 左冠林, 郭红霞, 林文智, 等. 考虑低碳制氢的微电网优化配置[J]. 电力自动化设备, 2023, 43(2): 9-18.
ZUO G L, GUO H X, LIN W Z, et al.Optimal configuration of microgrid considering low-carbon hydrogen production[J]. Electric power automation equipment, 2023, 43(2): 9-18.
[3] 申建建, 王月, 程春田, 等. 水风光多能互补发电调度问题研究现状及展望[J]. 中国电机工程学报, 2022, 42(11): 3871-3885.
SHEN J J, WANG Y, CHENG C T, et al.Research status and prospect of generation scheduling for hydropower-wind-solar energy complementary system[J]. Proceedings of the CSEE, 2022, 42(11): 3871-3885.
[4] 潘郑楠, 梁宁, 徐慧慧, 等. 基于纳什谈判理论的风电-虚拟氢厂参与现货市场合作运行策略[J]. 电力自动化设备, 2023, 43(5): 129-137.
PAN Z N, LIANG N, XU H H, et al.Cooperative operation strategy of wind power-virtual hydrogen plant participating in spot market based on Nash bargaining theory[J]. Electric power automation equipment, 2023, 43(5): 129-137.
[5] 邵志芳, 吴继兰. 基于动态电价风光电制氢容量配置优化[J]. 太阳能学报, 2020, 41(8): 227-235.
SHAO Z F, WU J L.Capacity configuration optimization of hydrogen production from wind and PV power based on dynamic electricity price[J]. Acta energiae solaris sinica, 2020, 41(8): 227-235.
[6] 朱显辉, 胡旭, 师楠. 风氢互补的长期储能微电网容量优化配置模型[J]. 黑龙江科技大学学报, 2021, 31(3): 344-349.
ZHU X H, HU X, SHI N.Optimal allocation model of microgrid capacity of wind and hydrogen complement[J]. Journal of Heilongjiang University of Science and Technology, 2021, 31(3): 344-349.
[7] 呼鹏飞, 万萌萌, 余海天, 等. 基于改进粒子群算法的风氢储系统容量优化配置[J]. 科学技术创新, 2022(34): 48-53.
HU P F, WAN M M, YU H T, et al.Capacity optimization of wind hydrogen storage system based on improved particle swarm optimization algorithm[J]. Scientific and technological innovation, 2022(34): 48-53.
[8] 王磊, 王昭, 冯斌, 等. 基于双层优化模型的风-光-储互补发电系统优化配置[J]. 太阳能学报, 2022, 43(5): 98-104.
WANG L, WANG Z, FENG B, et al.Optimal configuration of wind-photovoltaic-ESS complementary power generation system based on bi-level optimization model[J]. Acta energiae solaris sinica, 2022, 43(5): 98-104.
[9] 赵振宇, 解冰清. 计及风光互补特性的风光容量优化配置模型[J]. 太阳能学报, 2023, 44(8): 149-156.
ZHAO Z Y, XIE B Q.Optimal allocation model of wind-solar capacity considering wind-solar complementary characteristics[J]. Acta energiae solaris sinica, 2023, 44(8): 149-156.
[10] 蔡国伟, 陈冲, 孔令国, 等. 风电/制氢/燃料电池/超级电容器混合系统控制策略[J]. 电工技术学报, 2017, 32(17): 84-94.
CAI G W, CHEN C, KONG L G, et al.Control of hybrid system of wind/hydrogen/fuel cell/supercapacitor[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 84-94.
[11] 牛萌, 洪振鹏, 李蓓, 等. 考虑制氢效率提升的风电制氢系统优化控制策略[J]. 太阳能学报, 2023, 44(9): 366-376.
NIU M, HONG Z P, LI B, et al.Optimal control strategy of wind power to hydrogen system considering electrolyzer efficiency improvement[J]. Acta energiae solaris sinica, 2023, 44(9): 366-376.
[12] IBÁÑEZ-RIOJA A, JÄRVINEN L, PURANEN P, et al. Off-grid solar PV-wind power-battery-water electrolyzer plant: simultaneous optimization of component capacities and system control[J]. Applied energy, 2023, 345: 121277.
[13] 许建明, 王蔚, 陈廷彧, 等. 直流微网用风力发电机建模[J]. 长春工业大学学报, 2020, 41(6): 581-586.
XU J M, WANG W, CHEN T Y, et al.DC-microgrid wind turbine modeling[J]. Journal of Changchun University of Technology, 2020, 41(6): 581-586.
[14] SAADAOUI F, MAMMAR K, HABBAB M.Energy management of a hybrid energy system (PV/PEMFC and lithium-ion battery) based on hydrogen minimization modeled by macroscopic energy representation[J]. International journal of hydrogen energy, 2023, 48(53): 20388-20405.
[15] HAN Y L, SHI K N, QIAN Y, et al.Design and operational optimization of a methanol-integrated wind-solar power generation system[J]. Journal of environmental chemical engineering, 2023, 11(3): 109992.
基金
河北省科技厅重点研发计划(20314501D); 河北省科技支撑重点研发项目(19214501D); 河北省科技厅引进国外智力项目(2019YX005A); 河北省教育厅青年基金(QN2021222)