钙钛矿/铜铟镓硒叠层太阳电池的发展及展望

李彬, 程家豪, 李望南, 彭勇

太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 10-22.

PDF(3782 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3782 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (4) : 10-22. DOI: 10.19912/j.0254-0096.tynxb.2024-0010

钙钛矿/铜铟镓硒叠层太阳电池的发展及展望

  • 李彬1, 程家豪2, 李望南3, 彭勇1,4
作者信息 +

DEVELOPMENT AND PROSPECTS OF PEROVSKITE/CIGS TANDEM SOLAR CELLS

  • Li Bin1, Cheng Jiahao2, Li Wangnan3, Peng Yong1,4
Author information +
文章历史 +

摘要

综述近年来钙钛矿/铜铟镓硒叠层太阳电池的发展现状,介绍钙钛矿/铜铟镓硒叠层太阳电池技术在效率和可靠性方面的优势。从工艺优化、结构协同设计和性能优化等方面对钙钛矿/铜铟镓硒叠层太阳电池进行总结,着重讨论叠层结构的每个子单元太阳电池复杂的协同效应。

Abstract

In the paper, the recent developments of perovskite/copper indium gallium selenide tandem solar cells are delved deeply, highlighting the advantages of this technology in terms of both efficiency and reliability. The developments of perovskite/copper indium gallium selenide tandem solar cells from the perspectives of process optimization, structure co-design, and performance improvement are summarized. The complex synergistic effect of each subunit device in the tandem structure is emphatically discussed.

关键词

钙钛矿太阳电池 / 铜铟镓硒太阳电池 / 叠层太阳电池 / 界面工程 / 光学管理

Key words

perovskite solar cells / copper indium gallium selenide solar cells / tandem solar cells / interface engineering / light management

引用本文

导出引用
李彬, 程家豪, 李望南, 彭勇. 钙钛矿/铜铟镓硒叠层太阳电池的发展及展望[J]. 太阳能学报. 2024, 45(4): 10-22 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0010
Li Bin, Cheng Jiahao, Li Wangnan, Peng Yong. DEVELOPMENT AND PROSPECTS OF PEROVSKITE/CIGS TANDEM SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2024, 45(4): 10-22 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0010
中图分类号: TM914.4   

参考文献

[1] HAEGEL N M, VERLINDEN P, VICTORIA M, et al.Photovoltaics at multi-terawatt scale: waiting is not an option[J]. Science, 2023, 380(6640): 39-42.
[2] ALLOUHI A, REHMAN S, BUKER M S, et al.Up-to-date literature review on solar PV systems: technology progress, market status and R&D[J]. Journal of cleaner production, 2022, 362: 132339.
[3] 李星宇, 董海悦, 夏天, 等. 碘三离子后处理对钙钛矿太阳电池的影响研究[J]. 太阳能学报, 2023, 44(3): 409-414.
LI X Y, DONG H Y, XIA T, et al.Investigation of post-treatment via tri-iodine ions for perovskite solar cells[J]. Acta energiae solaris sinica, 2023, 44(3): 409-414.
[4] 郝彦忠, 栗靖琦, 钱近, 等. P3HT和Spiro-OMeTAD共混物为光活性层和空穴传输层的杂化太阳电池[J]. 太阳能学报, 2021, 42(12): 459-464.
HAO Y Z, LI J Q, QIAN J, et al.Blend of P3HT and Spiro-OMeTAD as photoactive layer and hole transport layer in hybrid solar cell[J]. Acta energiae solaris sinica, 2021, 42(12): 459-464.
[5] QIANG Z Y, WANG C X, GAO X, et al.Challenges of scalable development for perovskite/silicon tandem solar cells[J]. ACS applied energy materials, 2022, 5(6): 6499-6515.
[6] SVEINBJÖRNSSON K, LI B, MARIOTTI S, et al. Monolithic perovskite/silicon tandem solar cell with 28.7% efficiency using industrial silicon bottom cells[J]. ACS energy letters, 2022, 7(8): 2654-2656.
[7] JOŠT M, KÖHNEN E, AL-ASHOURI A, et al. Perovskite/CIGS tandem solar cells: from certified 24.2% toward 30% and beyond[J]. ACS energy letters, 2022, 7(4): 1298-1307.
[8] TODOROV T, GERSHON T, GUNAWAN O, et al. Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage[J]. Applied physics letters, 2014, 105(17): 173902-1-173902-4.
[9] XIE Y M, YAO Q, ZENG Z X, et al.Homogeneous grain boundary passivation in wide-bandgap perovskite films enables fabrication of monolithic perovskite/organic tandem solar cells with over 21% efficiency[J]. Advanced functional materials, 2022, 32(19): 2112126.
[10] LIANG Z, ZHANG Y, XU H F, et al.Homogenizing out-of-plane cation composition in perovskite solar cells[J]. Nature, 2023, 624: 557-563.
[11] NAKAMURA M, TADA K, KINOSHITA T, et al.Perovskite/CIGS spectral splitting double junction solar cell with 28% power conversion efficiency[J]. iScience, 2020, 23(12): 101817.
[12] 刘忠范. 紫外光下高度稳定的无机钙钛矿/有机叠层太阳电池[J]. 物理化学学报, 2018, 34(11): 1195-1196.
LIU Z F.Inorganic perovskite/organic tandem solar cells with high stability under UV light[J]. Acta physico-chimica sinica, 2018, 34(11): 1195-1196.
[13] TIAN X Y, STRANKS S D, YOU F Q. Life cycle energy use and environmental implications of high-performance perovskite tandem solar cells[J]. Science advances, 2020, 6(31): eabb0055.
[14] 韩胜男, 常萱, 陈静伟, 等. MoNx薄膜制备及其在柔性不锈钢CIGS太阳电池中的应用[J]. 太阳能学报, 2023, 44(7): 122-128.
HAN S N, CHANG X, CHEN J W, et al.Fabrication of MoNx thin films and its applications in flexible stainless steel CIGS solar cells[J]. Acta energiae solaris sinica, 2023, 44(7): 122-128.
[15] TAN H Q, LIANG H M, KRAUSE M, et al.Accounting for fabrication variability in transparent perovskite solar cells for four-terminal tandem applications[J]. Solar RRL, 2023, 7(18): 2300339.
[16] ZHANG S B, WEI S H, ZUNGER A, et al.Defect physics of the CuInSe2 chalcopyrite semiconductor[J]. Physical review B, 1998, 57(16): 9642-9656.
[17] 李毅, 张嘉, 刘锋, 等. 基于氧化物异质结的量子点敏化太阳电池[J]. 太阳能学报, 2013, 34(12): 2218-2221.
LI Y, ZHANG J, LIU F, et al.Quantum dots sensitized solar cells based on oxide heterojunction[J]. Acta energiae solaris sinica, 2013, 34(12): 2218-2221.
[18] WEISS D N.Tandem solar cells beyond perovskite-silicon[J]. Joule, 2021, 5(9): 2247-2250.
[19] MOHAMAD NOH M F, TEH C H, DAIK R, et al. The architecture of the electron transport layer for a perovskite solar cell[J]. Journal of materials chemistry C, 2018, 6(4): 682-712.
[20] FU F, FEURER T, JÄGER T, et al. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications[J]. Nature communications, 2015, 6: 8932.
[21] SHOCKLEY W, QUEISSER H J.Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of applied physics, 1961, 32(3): 510-519.
[22] YANG Y M, CHEN Q, HSIEH Y T, et al.Multilayer transparent top electrode for solution processed perovskite/Cu(In, Ga)(Se, S)2 four terminal tandem solar cells[J]. ACS nano, 2015, 9(7): 7714-7721.
[23] JOST M, KEGELMANN L, KORTE L, et al.Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency[J]. Advanced energy materials, 2020, 10(26): 1904102.
[24] DE VOS A.Detailed balance limit of the efficiency of tandem solar cells[J]. Journal of physics D: applied physics, 1980, 13(5): 839-846.
[25] MARTÍ A, ARAÚJO G L. Limiting efficiencies for photovoltaic energy conversion in multigap systems[J]. Solar energy materials and solar cells, 1996, 43(2): 203-222.
[26] BAILIE C D, CHRISTOFORO M G, MAILOA J P, et al.Semi-transparent perovskite solar cells for tandems with silicon and CIGS[J]. Energy & environmental science, 2015, 8(3): 956-963.
[27] TODOROV T, GERSHON T, GUNAWAN O, et al.Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering[J]. Advanced energy materials, 2015, 5(23): 1500799.
[28] HAN Q F, HSIEH Y T, MENG L, et al.High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells[J]. Science, 2018, 361(6405): 904-908.
[29] GUCHHAIT A, DEWI H A, LEOW S W, et al.Over 20% efficient CIGS-perovskite tandem solar cells[J]. ACS energy letters, 2017, 2(4): 807-812.
[30] RUIZ-PRECIADO M A, GOTA F, FASSL P, et al. Monolithic two-terminal perovskite/CIS tandem solar cells with efficiency approaching 25%[J]. ACS energy letters, 2022, 7(7): 2273-2281.
[31] MANEKKATHODI A, CHEN B, KIM J, et al.Solution-processed perovskite-colloidal quantum dot tandem solar cells for photon collection beyond 1000 nm[J]. Journal of materials chemistry A, 2019, 7(45): 26020-26028.
[32] JOŠT M, BERTRAM T, KOUSHIK D, et al. 21.6%-efficient monolithic perovskite/Cu(In, Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces[J]. ACS energy letters, 2019, 4(2): 583-590.
[33] AL-ASHOURI A, MAGOMEDOV A, ROß M, et al.Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells[J]. Energy & environmental science, 2019, 12(11): 3356-3369.
[34] SHRIVASTAV N, KASHYAP S, MADAN J, et al.Perovskite-CIGS monolithic tandem solar cells with 29.7% efficiency: a numerical study[J]. Energy & fuels, 2023, 37(4): 3083-3090.
[35] UHL A R, RAJAGOPAL A, CLARK J A, et al.Solution-processed low-bandgap CuIn(S, Se)2 absorbers for high-efficiency single-junction and monolithic chalcopyrite-perovskite tandem solar cells[J]. Advanced energy materials, 2018, 8(27): 1801254.
[36] AL-THANI H A, HASOON F S. Role of pre-layer Mo films in microstructural and morphological properties of over-layer CIGS films[J]. MRS advances, 2017, 2(53): 3215-3224.
[37] JEHL Z, BOUTTEMY M, LINCOT D, et al.Insights on the influence of surface roughness on photovoltaic properties of state of the art copper indium gallium diselenide thin films solar cells[J]. Journal of applied physics, 2012, 111(11): 114509.
[38] BELLINI E, Solliance, MiaSolé hit 26.5% efficiency on tandem CIGS/perovskite solar cell, PV Magazine. (2021). https://www.pv-magazine.com/2021/02/15/solliancemiasole- hit-26-5-efficiency-on-tandem-cigs-perovskite-solar-cell/(accessed August 1, 2023).
[39] KRANZ L, ABATE A, FEURER T, et al.High-efficiency polycrystalline thin film tandem solar cells[J]. The journal of physical chemistry letters, 2015, 6(14): 2676-2681.
[40] FU F, FEURER T, WEISS T P, et al.High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration[J]. Nature energy, 2017, 2(1): 16190.
[41] SHEN H P, DUONG T, PENG J, et al.Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity[J]. Energy & environmental science, 2018, 11(2): 394-406.
[42] JAYSANKAR M, PAETEL S, DEBUCQUOY M, et al.Efficient, large-area scalable perovskite-Si and perovskite-CIGS tandem solar modules[C]//2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). Waikoloa, HI, USA, 2018: 3584-3587.
[43] FEURER T, CARRON R, TORRES SEVILLA G, et al.Efficiency improvement of near-stoichiometric CuInSe2 solar cells for application in tandem devices[J]. Advanced energy materials, 2019, 9(35): 1901428.
[44] SCHULTES M, HELDER T, AHLSWEDE E, et al.Sputtered transparent electrodes (IO: H and IZO) with low parasitic near-infrared absorption for perovskite-Cu(In, Ga)Se2 tandem solar cells[J]. ACS applied energy materials, 2019, 2(11): 7823-7831.
[45] GHARIBZADEH S, HOSSAIN I M, FASSL P, et al.2D/3D heterostructure for semitransparent perovskite solar cells with engineered bandgap enables efficiencies exceeding 25% in four-terminal tandems with silicon and CIGS[J]. Advanced functional materials, 2020, 30(19): 1909919.
[46] JIANG Y, FEURER T, CARRON R, et al.High-mobility In2O3:H electrodes for four-terminal perovskite/CuInSe2 tandem solar cells[J]. ACS nano, 2020, 14(6): 7502-7512.
[47] CHEN C, LIANG J W, ZHANG J J, et al.Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells[J]. Nano energy, 2021, 90: 106608.
[48] ZHANG C Y, CHEN M, FU F, et al.CNT-based bifacial perovskite solar cells toward highly efficient 4-terminal tandem photovoltaics[J]. Energy & environmental science, 2022, 15(4): 1536-1544.
[49] TANG L T, WANG X M, LIU X X, et al.Mixed solvents assisted post-treatment enables high-efficiency single-junction perovskite and 4T perovskite/CIGS tandem solar cells[J]. Advanced science, 2022, 9(23): e2201768.
[50] FEENEY T, HOSSAIN I M, GHARIBZADEH S, et al.Four-terminal perovskite/copper indium gallium selenide tandem solar cells: unveiling the path to >27% in power conversion efficiency[J]. Solar RRL, 2022, 6(12): 2200662.
[51] ANAND A, ISLAM M M, MEITZNER R, et al.Introduction of a novel figure of merit for the assessment of transparent conductive electrodes in photovoltaics: exact and approximate form[J]. Advanced energy materials, 2021, 11(26): 2100875.
[52] ROSLI N N, IBRAHIM M A, AHMAD LUDIN N, et al.A review of graphene based transparent conducting films for use in solar photovoltaic applications[J]. Renewable and sustainable energy reviews, 2019, 99: 83-99.
[53] SAFAEI J, ROSLI N N, MOHAMAD NOH M F, et al. Low temperature fabrication of transparent conductive electrode with high ultraviolet transmittance down to wavelength of 250 nm[J]. Physica status solidi rapid research letters, 2018, 12(12): 1800441.
[54] ZHANG C J, NICOLOSI V.Graphene and MXene-based transparent conductive electrodes and supercapacitors[J]. Energy storage materials, 2019, 16: 102-125.
[55] WANG P C, JIAN M L, ZHANG C, et al.Highly stable graphene-based flexible hybrid transparent conductive electrodes for organic solar cells[J]. Advanced materials interfaces, 2022, 9(3): 2101442.
[56] KAMIJO T, DE WINTER S, PANDITHA P, et al.Printed copper grid transparent conducting electrodes for organic light-emitting diodes[J]. ACS applied electronic materials, 2022, 4(2): 698-706.
[57] GOVIND R K, MONDAL I, BAISHYA K, et al.Large-area fabrication of high performing, flexible, transparent conducting electrodes using screen printing and spray coating techniques[J]. Advanced materials technologies, 2022, 7(6): 2101120.
[58] LI H, YAN Z, LI M, et al.Probing the stability of perovskite solar cell under working condition through an ultra-thin silver electrode: beyond the halide ion diffusion and metal diffusion[J]. Chemical engineering journal, 2023, 458: 141405.
[59] FERGUSON V, LI B W, TAS M O, et al.Direct growth of vertically aligned carbon nanotubes onto transparent conductive oxide glass for enhanced charge extraction in perovskite solar cells[J]. Advanced materials interfaces, 2020, 7(21): 2001121.
[60] PISONI S, FU F, FEURER T, et al.Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices[J]. Journal of materials chemistry A, 2017, 5(26): 13639-13647.
[61] MACCO B, KNOOPS H C M, KESSELS W M M. Electron scattering and doping mechanisms in solid-phase-crystallized In2O3:H prepared by atomic layer deposition[J]. ACS applied materials & interfaces, 2015, 7(30): 16723-16729.
[62] SHI B, DUAN L R, ZHAO Y, et al. Semitransparent perovskite solar cells: from materials and devices to applications[J]. Advanced materials, 2020, 32(3): 1806474.1-1806474.12.
[63] BUSH K A, BAILIE C D, CHEN Y, et al.Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode[J]. Advanced materials, 2016, 28(20): 3937-3943.
[64] PARK H H, KIM J, KIM G, et al.Transparent electrodes consisting of a surface-treated buffer layer based on tungsten oxide for semitransparent perovskite solar cells and four-terminal tandem applications[J]. Small methods, 2020, 4(5): 2000074.
[65] ZHU S J, YAO X, REN Q S, et al.Transparent electrode for monolithic perovskite/silicon-heterojunction two-terminal tandem solar cells[J]. Nano energy, 2018, 45: 280-286.
[66] LIU K, CHEN B, YU Z J, et al.Reducing sputter induced stress and damage for efficient perovskite/silicon tandem solar cells[J]. Journal of materials chemistry A, 2022, 10(3): 1343-1349.
[67] LOU J J, FENG J S, CAO Y, et al.Designed multi-layer buffer for high-performance semitransparent wide-bandgap perovskite solar cells[J]. Materials advances, 2023, 4(7): 1777-1784.
[68] WERNER J, GEISSBÜHLER J, DABIRIAN A, et al. Parasitic absorption reduction in metal oxide-based transparent electrodes: application in perovskite solar cells[J]. ACS applied materials & interfaces, 2016, 8(27): 17260-17267.
[69] LIU P, LIU X L, LYU L, et al.Interfacial electronic structure at the CH3NH3PbI3/MoOx interface[J]. Applied physics letters, 2015, 106(19): 193903.
[70] ARSAD A Z, ZUHDI A W M, ABDULLAH S F, et al. Effect of chemical bath deposition variables on the properties of zinc sulfide thin films: a review[J]. Molecules, 2023, 28(6): 2780.
[71] TAILOR N K, ABDI-JALEBI M, GUPTA V, et al.Recent progress in morphology optimization in perovskite solar cell[J]. Journal of materials chemistry A, 2020, 8(41): 21356-21386.
[72] YANG Y Q, WU J H, WANG X B, et al.Suppressing vacancy defects and grain boundaries via Ostwald ripening for high-performance and stable perovskite solar cells[J]. Advanced materials, 2020, 32(7): e1904347.
[73] DODGE M J.Refractive properties of magnesium fluoride[J]. Applied optics, 1984, 23(12): 1980-1985.

基金

国家自然科学基金(U21A20171; U20A20245); 湖北隆中实验室自主创新基金(2022ZZ-09); 湖北省自然基金委创新群体项目(2023AFA010); 湖北省自然科学基金创新发展联合基金(2023AFD034)

PDF(3782 KB)

Accesses

Citation

Detail

段落导航
相关文章

/