基于磺化碳基固体酸的纤维素水解糖化研究进展

陆佳, 苏小红, 刘泽, 刘伟

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 663-672.

PDF(1923 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1923 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 663-672. DOI: 10.19912/j.0254-0096.tynxb.2024-0044

基于磺化碳基固体酸的纤维素水解糖化研究进展

  • 陆佳, 苏小红, 刘泽, 刘伟
作者信息 +

PROGRESS IN HYDROLYTIC SACCHARIFICATION OF CELLULOSE BY SULFONATED CARBON-BASED SOLID ACIDS

  • Lu Jia, Su Xiaohong, Liu Ze, Liu Wei
Author information +
文章历史 +

摘要

对磺化碳基固体酸制备原料及制备方法进行系统介绍,分析磺化碳基固体酸物理化学结构与其催化纤维素水解的构效关系,讨论碳基固体酸失活原因及分离回收方法。针对磺化碳基固体酸与纤维素间的传质限制,总结归纳先“降结晶、再水解”的纤维素高效水解策略。最后对磺化碳基固体酸的未来研究重点和前景进行展望,以期为促进磺化碳基固体酸在木质纤维素糖平台构建中的创新发展提供科学参考。

Abstract

In this paper, raw materials and preparation methods of sulfonated carbon-based solid acids were systematically introduced, the physicochemical structure of sulfonated carbon-based solid acids was analyzed in terms of their conformational relationship with cellulose hydrolysis.The reasons for deactivation of carbon-based solid acids and their separation and recovery methods were discussed.In view of the mass transfer limitations between solid acids and cellulose, a high-efficiency catalytic strategy named “first reducing crystallization and then hydrolysis”were summarized. Finally, the future research focus and prospects of sulfonated carbon-based solid acids were prospected,which provide scientific references for promoting the innovative development of sulfonated carbon-based solid acids in the construction of lignocellulosic sugar platforms.

关键词

生物质 / 水解 / 碳基固体酸 / 纤维素 / 糖化

Key words

biomass / hydrolysis / carbon-based solid acids / cellulose / saccharification

引用本文

导出引用
陆佳, 苏小红, 刘泽, 刘伟. 基于磺化碳基固体酸的纤维素水解糖化研究进展[J]. 太阳能学报. 2024, 45(10): 663-672 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0044
Lu Jia, Su Xiaohong, Liu Ze, Liu Wei. PROGRESS IN HYDROLYTIC SACCHARIFICATION OF CELLULOSE BY SULFONATED CARBON-BASED SOLID ACIDS[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 663-672 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0044
中图分类号: TQ352.7   

参考文献

[1] GIULIANO A.The transition of scientific research from biomass-to-energy/biofuels to biomass-to-biochemicals in a biorefinery systems framework[J]. Energies, 2023, 16(5): 2261.
[2] SCHUTYSER W, RENDERS T, VAN DEN BOSCH S, et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading[J]. Chemical Society Reviews, 2018, 47(3): 852-908.
[3] 陆佳, 刘伟, 王欣, 等. 碳基固体酸催化剂催化纤维素水解研究进展[J]. 化学工程师, 2018, 32(2): 51-56.
LU J, LIU W, WANG X, et al.Research progress in hydrolysis of cellulose catalyzed by carbon based solid acid catalyst[J]. Chemical engineer, 2018, 32(2): 51-56.
[4] 卢思, 王琼, 梁翠谊, 等. 碳基固体酸预处理结合酶解糖化玉米芯的研究[J]. 太阳能学报, 2022, 43(5): 372-376.
LU S, WANG Q, LIANG C Y, et al.Saccharification of corncob by carbon-based solid acid pretreatment and subsequent enzymatic hydrolysis[J]. Acta energiae solaris sinica, 2022, 43(5): 372-376.
[5] GUO H X, LIAN Y F, YAN L L, et al.Cellulose-derived superparamagnetic carbonaceous solid acid catalyst for cellulose hydrolysis in an ionic liquid or aqueous reaction system[J]. Green chemistry, 2013, 15(8): 2167-2174.
[6] 仇亿, 程军, 张泽, 等. 氧化石墨烯固体酸催化湿藻油制生物柴油[J]. 太阳能学报, 2021, 42(4): 40-45.
QIU Y, CHENG J, ZHANG Z, et al.Biodiesel production from wet microalgae using graphene oxide as solid acid catalyst[J]. Acta energiae solaris sinica, 2021, 42(4): 40-45.
[7] RASTOGI M, SHRIVASTAVA S.Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes[J]. Renewable and sustainable energy reviews, 2017, 80: 330-340.
[8] HU L, LIN L, WU Z, et al. Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts[J]. Applied catalysis B: environmental, 2015, 174/175: 225-243.
[9] 詹盈盈, 杨文霞, 刘迎新. 碳基固体酸的制备与应用研究进展[J]. 浙江化工, 2016, 47(1): 21-25.
ZHAN Y Y, YANG W X, LIU Y X.Progress in preparation and application of carbon-based solid acid catalysts[J]. Zhejiang chemical industry, 2016, 47(1): 21-25.
[10] HARA M.Biomass conversion by a solid acid catalyst[J]. Energy & environmental science, 2010, 3(5): 601-607.
[11] MAHAJAN A, GUPTA P.Carbon-based solid acids: a review[J]. Environmental chemistry letters, 2020, 18(2): 299-314.
[12] HARA M, YOSHIDA T, TAKAGAKI A, et al.A carbon material as a strong protonic acid[J]. Angewandte chemie, 2004, 43(22): 2955-2958.
[13] 刘婉玉. 生物质碳基固体酸催化生物质水解的机理研究[D]. 杭州: 浙江大学, 2016.
LIU W Y.Mechanism study on the hydrolysis of biomass catalyzed by canbonaceous solid acid[D]. Hangzhou: Zhejiang University, 2016.
[14] 李焕梅. 褐煤制备煤基固体酸及其催化水解纤维素的研究[D]. 太原: 太原理工大学, 2014.
LI H M.Preparation of coal-based soild acid by lignite and its performance research on hydrolysis of cellulose[D]. Taiyuan: Taiyuan University of Technology, 2014.
[15] LIU Y, ZHENG Z M, ZHU J Q. Experimental study on cellulose hydrolysis using active carbon-based and carbon nanotube-based solid acid catalysts[J]. Advanced materials research, 2014, 953/954: 178-182.
[16] LIU M, JIA S Y, GONG Y Y, et al.Effective hydrolysis of cellulose into glucose over sulfonated sugar-derived carbon in an ionic liquid[J]. Industrial & engineering chemistry research, 2013, 52(24): 8167-8173.
[17] 陆佳, 刘伟, 王欣, 等. 玉米秸秆衍生碳基固体酸的制备及其催化纤维素水解糖化[J]. 化工进展, 2020, 39(9): 3635-3642.
LU J, LIU W, WANG X, et al.Preparation of carbon-based solid acid derived from corn stalk and its catalytic performance in hydrolysis and saccharification of cellulose[J]. Chemical industry and engineering progress, 2020, 39(9): 3635-3642.
[18] LI H X, ZHANG X H, WANG Q, et al.Preparation of the recycled and regenerated mesocarbon microbeads-based solid acid and its catalytic behaviors for hydrolysis of cellulose[J]. Bioresource technology, 2018, 270: 166-171.
[19] 李衡翔. 煤沥青基多功能固体酸的制备及水解纤维素性能研究[D]. 太原: 太原理工大学, 2020.
LI H X.Research on the preparation of coal tar pitch based multifunctional solid acid and its catalytic behavior for hydrolysis of cellulose[D]. Taiyuan: Taiyuan University of Technology, 2020.
[20] 廉优芬, 闫碌碌, 王羽, 等. 果糖一步水热合成碳微球固体酸催化纤维素水解[J]. 化学学报, 2014, 72(4): 502-507.
LIAN Y F, YAN L L, WANG Y, et al.One-step preparation of carbonaceous solid acid catalysts by hydrothermal carbonization of fructose for cellulose hydrolysis[J]. Acta chimica sinica, 2014, 72(4): 502-507.
[21] 朱俊东. 工业木质素基固体酸的制备及催化水解纤维素的研究[D]. 泉州: 华侨大学, 2017.
ZHU J D.Preparation of industrial lignin-derived solid acisd and research on catalytic hydrolysis ofcellulose[D]. Quanzhou:Huaqiao Unversity, 2017.
[22] 方雨豪, 韦一, 马兵兵, 等. 浸渍改性剂对竹炭碳磺酸结构和催化性能的影响[J]. 高校化学工程学报, 2018, 32(3): 731-738.
FANG Y H, WEI Y, MA B B, et al.Effects of impregnation agents on structure and catalytic performance of bamboo carbon-based solid acids[J]. Journal of chemical engineering of Chinese universities, 2018, 32(3): 731-738.
[23] 阴昊天. 多孔固体酸的制备及催化性能研究[D]. 绍兴: 绍兴文理学院, 2023.
YIN H T.Research on preparation of porous solid acids and their catalytic activities[D]. Shaoxing: Shaoxing University, 2023.
[24] 方世杰,刘吉星. 磺化碳制备方法的研究进展[J]. 材料科学,2023,13(3):150-159.
FANG S J,LIU J X.Progress in preparation of sulfonated carbon[J]. Material sciences, 2023, 13(3):150-159.
[25] MALINS K, KAMPARS V, BRINKS J, et al. Synthesis of activated carbon based heterogenous acid catalyst for biodiesel preparation[J]. Applied catalysis B: environmental, 2015, 176/177: 553-558.
[26] GENG L, WANG Y, YU G, et al.Efficient carbon-based solid acid catalysts for the esterification of oleic acid[J]. Catalysis communications, 2011, 13(1): 26-30.
[27] NATA I F, IRAWAN C, MARDINA P, et al.Carbon-based strong solid acid for cornstarch hydrolysis[J]. Journal of solid state chemistry France, 2015, 230: 163-168.
[28] ZHANG B, REN J,LIU X, et al.Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst[J].Catalysis Communications, 2010, 11(7): 629-632.
[29] TODA M, TAKAGAKI A, OKAMURA M, et al.Green chemistry: biodiesel made with sugar catalyst[J]. Nature, 2005, 438(7065): 178.
[30] ALDANA-PÉREZ A, LARTUNDO-ROJAS L, GÓMEZ R, et al. Sulfonic groups anchored on mesoporous carbon Starbons-300 and its use for the esterification of oleic acid[J]. Fuel, 2012, 100: 128-138.
[31] NAKHATE A V, YADAV G D.Synthesis and characterization of sulfonated carbon-based graphene oxide monolith by solvothermal carbonization for esterification and unsymmetrical ether formation[J]. ACS sustainable chemistry & engineering, 2016, 4(4): 1963-1973.
[32] 詹盈盈. 碳基固体酸催化果糖脱水制备5-羟甲基糠醛的研究[D]. 杭州: 浙江工业大学, 2015.
ZHAN Y Y.Preparation of 5-HMF from fructose catalyzed by carbon-based solid acid[D]. Hangzhou: Zhejiang University of Technology, 2015.
[33] 黄维, 范同祥. 水热碳化法的研究进展[J]. 材料导报, 2014, 28(S1): 131-135.
HUANG W, FAN T X.Research progress of hydrothermal carbonization method[J]. Materials reports, 2014, 28(S1): 131-135.
[34] 张玲玲, 刘红茹, 孙和. 直接水热合成法和模板剂法制备碳微球的比较及性能评价[J]. 化工新型材料, 2018, 46(S1): 73-75, 80.
ZHANG L L, LIU H R, SUN H.Comparison and evaluation of carbon microspheres prepared by direct hydrothermal and template methods[J]. New chemical materials, 2018, 46(S1): 73-75, 80.
[35] 阚玉娜, 陈冰炜, 翟胜丞, 等. 生物质水热碳化及其功能化应用研究进展[J]. 化工新型材料, 2021, 49(12): 43-49.
KAN Y N, CHEN B W, ZHAI S C, et al.Research progress on hydrothermal carbonization of biomass and its functional application[J]. New chemical materials, 2021, 49(12): 43-49.
[36] 文世涛, 仲美娟, 尚莉莉, 等. 水热炭化法制备生物质基碳纳米材料研究进展[J]. 材料导报, 2021, 35(S2): 28-32.
WEN S T, ZHONG M J, SHANG L L, et al.Research advance of biomass-based carbon nanomaterials by hydrothermal carbonization[J]. Materials reports, 2021, 35(S2): 28-32.
[37] 刘婉玉, 亓伟, 周劲松, 等. 生物质碳基固体酸催化剂在纤维素水解中的研究进展[J]. 林产化学与工业, 2015, 35(1): 138-144.
LIU W Y, QI W, ZHOU J S, et al.Research progress in cellulose hydrolysis by carbonaceous solid acid[J]. Chemistry and industry of forest products, 2015, 35(1): 138-144.
[38] YANG H, YAN R, CHEN H, et al.Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007,(12):1781-1788.
[39] 王春艳, 申曙光, 孔祥鹏, 等. 升温速率对木质素基固体酸结构及其催化水解纤维素的影响[J]. 化工新型材料, 2022, 50(2): 161-165, 170.
WANG C Y, SHEN S G, KONG X P, et al.Influence of heating rate on structure of lignin-based solid acid and their catalytic performance in cellulose hydrolysis[J]. New chemical materials, 2022, 50(2): 161-165, 170.
[40] OKAMURA M, TAKAGAKI A, TODA M, et al.Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon[J]. Chemistry of materials, 2006, 18(13): 3039-3045.
[41] 方雨豪. 竹炭碳磺酸的制备及其催化纤维素水解性能研究[D]. 杭州: 浙江工业大学, 2018.
FANG Y H.Study on the preparation of bamboo carbon-based solid acid and its catalytic properties in the hydrolysis of cellulose[D]. Hangzhou:Zhejiang University of Technology, 2018.
[42] 张颖诗, 王艳, 万金泉, 等. 基于固体酸的纤维素非均相催化糖化的研究进展[J]. 化工进展, 2014, 33(11): 2947-2955, 2981.
ZHANG Y S, WANG Y, WAN J Q, et al.Heterogeneous saccharification of cellulose by solid acid[J]. Chemical industry and engineering progress, 2014, 33(11): 2947-2955, 2981.
[43] 于贺伟. 煤基固体酸的优化制备及催化合成生物柴油特性研究[D]. 济南: 山东大学, 2019.
YU H W.Study on optimized preparation and catalytic performance for biodiesel synthesis of coal-based solid acid catalyst[D]. Ji’nan: Shandong University, 2019.
[44] 马兵. 竹炭碳磺酸的制备及其在纤维素水解中的应用[D]. 杭州: 浙江工业大学, 2017.
MA B B.Preparation of bamboo carbon-based solid acid and its applications in catalytic hydrolysis of cellulose[D]. Hangzhou: Zhejiang University of Technology, 2017.
[45] PANG J F, WANG A Q, ZHENG M Y, et al.Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures[J]. Chemical communications, 2010, 46(37): 6935-6937.
[46] 申曙光, 王涛, 秦海峰, 等. 不同碳源制备碳基固体酸及其在水解纤维素中的应用[J]. 功能材料, 2012, 43(12): 1598-1601.
SHEN S G, WANG T, QIN H F, et al.Synthesis and properties in hydrolytic cellulose of carbon-based solid acids prepared from different carbon sources[J]. Journal of functional materials, 2012, 43(12): 1598-1601.
[47] SHEN S G, CAI B, WANG C Y, et al.Preparation of a novel carbon-based solid acid from cocarbonized starch and polyvinyl chloride for cellulose hydrolysis[J]. Applied catalysis A: general, 2014, 473: 70-74.
[48] YUAN S J, LI T J, WANG Y M, et al.Double-adsorption functional carbon based solid acids derived from copyrolysis of PVC and PE for cellulose hydrolysis[J]. Fuel, 2019, 237: 895-902.
[49] JING S Q, SHEN S G, PENG X, et al.Preparation of a novel solid acid bearing sulfur-containing active groups and evaluation of its activity for cellulose hydrolysis[J]. Fuel processing technology, 2021, 224: 107004.
[50] 袁书娟. 强吸附含硼碳基固体酸的制备及其催化纤维素水解的研究[D]. 太原: 太原理工大学, 2019.
YUAN S J.Research on Hydrolysis of cellulose with strong adsorption boron-containing carbon-based solid acid[D]. Taiyuan: Taiyuan University of Technology, 2019.
[51] ZHU J D, GAN L H, LI B X, et al.Synthesis and characteristics of lignin-derived solid acid catalysts for microcrystalline cellulose hydrolysis[J]. Korean journal of chemical engineering, 2017, 34(1): 110-117.
[52] GAN L H, ZHU J D, LYU L.Cellulose hydrolysis catalyzed by highly acidic lignin-derived carbonaceous catalyst synthesized via hydrothermal carbonization[J]. Cellulose, 2017, 24(12): 5327-5339.
[53] LIN Q X, ZHANG C H, WANG X H, et al.Impact of activation on properties of carbon-based solid acid catalysts for the hydrothermal conversion of xylose and hemicelluloses[J]. Catalysis today, 2019, 319: 31-40.
[54] CHEN G Z, WANG X C, JIANG Y J, et al.Insights into deactivation mechanism of sulfonated carbonaceous solid acids probed by cellulose hydrolysis[J]. Catalysis today, 2019, 319: 25-30.
[55] VAN PELT A H, SIMAKOVA O A, SCHIMMING S M, et al. Stability of functionalized activated carbon in hot liquid water[J]. Carbon, 2014, 77: 143-154.
[56] LIU Z Y, LIU Z D.Comparison of hydrochar- and pyrochar-based solid acid catalysts from cornstalk: Physiochemical properties, catalytic activity and deactivation behavior[J]. Bioresource technology, 2020, 297: 122477.
[57] 李翔宇, 李学琴, 时君友, 等. 生物质炭基磁性固体酸催化剂研究进展[J]. 林产化学与工业, 2017, 37(5): 9-18.
LI X Y, LI X Q, SHI J Y, et al.Review on research progress of biomass carbon-based magnetic solid acid catalysts[J]. Chemistry and industry of forest products, 2017, 37(5): 9-18.
[58] JIN S Y, GONG J W, YANG C, et al.A recyclable and regenerable solid acid for efficient hydrolysis of cellulose to glucose[J]. Biomass and bioenergy, 2020, 138: 105611.
[59] 刘姝娜, 张续成, 亓伟, 等. 磁性碳基固体酸催化剂的制备及其水解工艺优化研究[J]. 太阳能学报, 2020, 41(6): 113-119.
LIU S N, ZHANG X C, QI W, et al.Preparation and hydrolysis process optimization of magnetic carbon-based solid acid catalyst[J]. Acta energiae solaris sinica, 2020, 41(6): 113-119.
[60] LI H X, SHI W J, ZHANG X H, et al.Catalytic hydrolysis of cellulose to total reducing sugars with superior recyclable magnetic multifunctional MCMB-based solid acid as a catalyst[J]. Journal of chemical technology & biotechnology, 2020, 95(3): 770-780.
[61] HU S L, ZENG Y J, WU D Z, et al.A novel magnetic carbon-based solid acid catalyst suitable for efficient hydrolysis of cellulose[J]. Biomass conversion and biorefinery, 2023, 13(3): 2207-2215.
[62] ZHANG C B, WANG H Y, LIU F D, et al.Magnetic core-shell Fe3O4@C-SO3H nanoparticle catalyst for hydrolysis of cellulose[J]. Cellulose, 2013, 20(1): 127-134.
[63] 于博士, 那海宁, 黄骏成, 等. 富羟基核/壳结构碳基催化促进剂的制备及辅助催化纤维素水解成糖[J]. 化工新型材料, 2023, 51(7): 231-234.
YU B S, NA H N, HUANG J C, et al.Preparation of hydroxyl-rich core/shell structured carbon-based catalytic accelerator and auxiliary catalytic hydrolysis of cellulose to glucose[J]. New chemical materials, 2023, 51(7): 231-234.
[64] 苏同超. 碳基磁性固体酸催化剂的制备及用于植物废弃物水解产糖[D]. 合肥: 中国科学技术大学, 2017.
SU T C.Preparation of magnetic carbonaceous acid catalyst and its application in the hydrolysis of plant wastes to sugars[D]. Hefei: University of Science and Technology of China, 2017.
[65] SU J L, QIU M, SHEN F, et al.Efficient hydrolysis of cellulose to glucose in water by agricultural residue-derived solid acid catalyst[J]. Cellulose, 2018, 25(1): 17-22.
[66] QI X H, YAN L L, SHEN F, et al.Mechanochemical-assisted hydrolysis of pretreated rice straw into glucose and xylose in water by weakly acidic solid catalyst[J]. Bioresource technology, 2019, 273: 687-691.
[67] 凌喆, 赖晨欢, 黄曹兴, 等. 预处理纤维素超分子结构变化机制研究进展[J]. 林业工程学报, 2021, 6(4): 24-34.
LING Z, LAI C H, HUANG C X, et al.Research progress in variations of cellulose supramolecular structures via biomass pretreatment[J]. Journal of forestry engineering, 2021, 6(4): 24-34.
[68] NI J P, NA H N, SHE Z, et al.Responsive behavior of regenerated cellulose in hydrolysis under microwave radiation[J]. Bioresource technology, 2014, 167: 69-73.
[69] TENG N, NI J P, CHEN H Z, et al.Initiating highly effective hydrolysis of regenerated cellulose by controlling transition of crystal form with sulfolane under microwave radiation[J]. ACS sustainable chemistry & engineering, 2016, 4(3): 1507-1511.
[70] HU L, ZHAO G, HAO W W, et al.Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes[J]. RSC advances, 2012, 2(30): 11184-11206.
[71] MISSION E G, QUITAIN A T, SASAKI M, et al.Synergizing graphene oxide with microwave irradiation for efficient cellulose depolymerization into glucose[J]. Green chemistry, 2017, 19(16): 3831-3843.
[72] ZHAI C K, TENG N, PAN B H, et al.Revealing the importance of non-thermal effect to strengthen hydrolysis of cellulose by synchronous cooling assisted microwave driving[J]. Carbohydrate polymers, 2018, 197: 414-421.

基金

黑龙江省自然科学基金联合引导项目(LH2021B027)

PDF(1923 KB)

Accesses

Citation

Detail

段落导航
相关文章

/