In this paper, raw materials and preparation methods of sulfonated carbon-based solid acids were systematically introduced, the physicochemical structure of sulfonated carbon-based solid acids was analyzed in terms of their conformational relationship with cellulose hydrolysis.The reasons for deactivation of carbon-based solid acids and their separation and recovery methods were discussed.In view of the mass transfer limitations between solid acids and cellulose, a high-efficiency catalytic strategy named “first reducing crystallization and then hydrolysis”were summarized. Finally, the future research focus and prospects of sulfonated carbon-based solid acids were prospected,which provide scientific references for promoting the innovative development of sulfonated carbon-based solid acids in the construction of lignocellulosic sugar platforms.
Lu Jia, Su Xiaohong, Liu Ze, Liu Wei.
PROGRESS IN HYDROLYTIC SACCHARIFICATION OF CELLULOSE BY SULFONATED CARBON-BASED SOLID ACIDS[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 663-672 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0044
中图分类号:
TQ352.7
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GIULIANO A.The transition of scientific research from biomass-to-energy/biofuels to biomass-to-biochemicals in a biorefinery systems framework[J]. Energies, 2023, 16(5): 2261. [2] SCHUTYSER W, RENDERS T, VAN DEN BOSCH S, et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading[J]. Chemical Society Reviews, 2018, 47(3): 852-908. [3] 陆佳, 刘伟, 王欣, 等. 碳基固体酸催化剂催化纤维素水解研究进展[J]. 化学工程师, 2018, 32(2): 51-56. LU J, LIU W, WANG X, et al.Research progress in hydrolysis of cellulose catalyzed by carbon based solid acid catalyst[J]. Chemical engineer, 2018, 32(2): 51-56. [4] 卢思, 王琼, 梁翠谊, 等. 碳基固体酸预处理结合酶解糖化玉米芯的研究[J]. 太阳能学报, 2022, 43(5): 372-376. LU S, WANG Q, LIANG C Y, et al.Saccharification of corncob by carbon-based solid acid pretreatment and subsequent enzymatic hydrolysis[J]. Acta energiae solaris sinica, 2022, 43(5): 372-376. [5] GUO H X, LIAN Y F, YAN L L, et al.Cellulose-derived superparamagnetic carbonaceous solid acid catalyst for cellulose hydrolysis in an ionic liquid or aqueous reaction system[J]. Green chemistry, 2013, 15(8): 2167-2174. [6] 仇亿, 程军, 张泽, 等. 氧化石墨烯固体酸催化湿藻油制生物柴油[J]. 太阳能学报, 2021, 42(4): 40-45. QIU Y, CHENG J, ZHANG Z, et al.Biodiesel production from wet microalgae using graphene oxide as solid acid catalyst[J]. Acta energiae solaris sinica, 2021, 42(4): 40-45. [7] RASTOGI M, SHRIVASTAVA S.Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes[J]. Renewable and sustainable energy reviews, 2017, 80: 330-340. [8] HU L, LIN L, WU Z, et al. Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts[J]. Applied catalysis B: environmental, 2015, 174/175: 225-243. [9] 詹盈盈, 杨文霞, 刘迎新. 碳基固体酸的制备与应用研究进展[J]. 浙江化工, 2016, 47(1): 21-25. ZHAN Y Y, YANG W X, LIU Y X.Progress in preparation and application of carbon-based solid acid catalysts[J]. Zhejiang chemical industry, 2016, 47(1): 21-25. [10] HARA M.Biomass conversion by a solid acid catalyst[J]. Energy & environmental science, 2010, 3(5): 601-607. [11] MAHAJAN A, GUPTA P.Carbon-based solid acids: a review[J]. Environmental chemistry letters, 2020, 18(2): 299-314. [12] HARA M, YOSHIDA T, TAKAGAKI A, et al.A carbon material as a strong protonic acid[J]. Angewandte chemie, 2004, 43(22): 2955-2958. [13] 刘婉玉. 生物质碳基固体酸催化生物质水解的机理研究[D]. 杭州: 浙江大学, 2016. LIU W Y.Mechanism study on the hydrolysis of biomass catalyzed by canbonaceous solid acid[D]. Hangzhou: Zhejiang University, 2016. [14] 李焕梅. 褐煤制备煤基固体酸及其催化水解纤维素的研究[D]. 太原: 太原理工大学, 2014. LI H M.Preparation of coal-based soild acid by lignite and its performance research on hydrolysis of cellulose[D]. Taiyuan: Taiyuan University of Technology, 2014. [15] LIU Y, ZHENG Z M, ZHU J Q. Experimental study on cellulose hydrolysis using active carbon-based and carbon nanotube-based solid acid catalysts[J]. Advanced materials research, 2014, 953/954: 178-182. [16] LIU M, JIA S Y, GONG Y Y, et al.Effective hydrolysis of cellulose into glucose over sulfonated sugar-derived carbon in an ionic liquid[J]. Industrial & engineering chemistry research, 2013, 52(24): 8167-8173. [17] 陆佳, 刘伟, 王欣, 等. 玉米秸秆衍生碳基固体酸的制备及其催化纤维素水解糖化[J]. 化工进展, 2020, 39(9): 3635-3642. LU J, LIU W, WANG X, et al.Preparation of carbon-based solid acid derived from corn stalk and its catalytic performance in hydrolysis and saccharification of cellulose[J]. Chemical industry and engineering progress, 2020, 39(9): 3635-3642. [18] LI H X, ZHANG X H, WANG Q, et al.Preparation of the recycled and regenerated mesocarbon microbeads-based solid acid and its catalytic behaviors for hydrolysis of cellulose[J]. Bioresource technology, 2018, 270: 166-171. [19] 李衡翔. 煤沥青基多功能固体酸的制备及水解纤维素性能研究[D]. 太原: 太原理工大学, 2020. LI H X.Research on the preparation of coal tar pitch based multifunctional solid acid and its catalytic behavior for hydrolysis of cellulose[D]. Taiyuan: Taiyuan University of Technology, 2020. [20] 廉优芬, 闫碌碌, 王羽, 等. 果糖一步水热合成碳微球固体酸催化纤维素水解[J]. 化学学报, 2014, 72(4): 502-507. LIAN Y F, YAN L L, WANG Y, et al.One-step preparation of carbonaceous solid acid catalysts by hydrothermal carbonization of fructose for cellulose hydrolysis[J]. Acta chimica sinica, 2014, 72(4): 502-507. [21] 朱俊东. 工业木质素基固体酸的制备及催化水解纤维素的研究[D]. 泉州: 华侨大学, 2017. ZHU J D.Preparation of industrial lignin-derived solid acisd and research on catalytic hydrolysis ofcellulose[D]. Quanzhou:Huaqiao Unversity, 2017. [22] 方雨豪, 韦一, 马兵兵, 等. 浸渍改性剂对竹炭碳磺酸结构和催化性能的影响[J]. 高校化学工程学报, 2018, 32(3): 731-738. FANG Y H, WEI Y, MA B B, et al.Effects of impregnation agents on structure and catalytic performance of bamboo carbon-based solid acids[J]. Journal of chemical engineering of Chinese universities, 2018, 32(3): 731-738. [23] 阴昊天. 多孔固体酸的制备及催化性能研究[D]. 绍兴: 绍兴文理学院, 2023. YIN H T.Research on preparation of porous solid acids and their catalytic activities[D]. Shaoxing: Shaoxing University, 2023. [24] 方世杰,刘吉星. 磺化碳制备方法的研究进展[J]. 材料科学,2023,13(3):150-159. FANG S J,LIU J X.Progress in preparation of sulfonated carbon[J]. Material sciences, 2023, 13(3):150-159. [25] MALINS K, KAMPARS V, BRINKS J, et al. Synthesis of activated carbon based heterogenous acid catalyst for biodiesel preparation[J]. Applied catalysis B: environmental, 2015, 176/177: 553-558. [26] GENG L, WANG Y, YU G, et al.Efficient carbon-based solid acid catalysts for the esterification of oleic acid[J]. Catalysis communications, 2011, 13(1): 26-30. [27] NATA I F, IRAWAN C, MARDINA P, et al.Carbon-based strong solid acid for cornstarch hydrolysis[J]. Journal of solid state chemistry France, 2015, 230: 163-168. [28] ZHANG B, REN J,LIU X, et al.Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst[J].Catalysis Communications, 2010, 11(7): 629-632. [29] TODA M, TAKAGAKI A, OKAMURA M, et al.Green chemistry: biodiesel made with sugar catalyst[J]. Nature, 2005, 438(7065): 178. [30] ALDANA-PÉREZ A, LARTUNDO-ROJAS L, GÓMEZ R, et al. Sulfonic groups anchored on mesoporous carbon Starbons-300 and its use for the esterification of oleic acid[J]. Fuel, 2012, 100: 128-138. [31] NAKHATE A V, YADAV G D.Synthesis and characterization of sulfonated carbon-based graphene oxide monolith by solvothermal carbonization for esterification and unsymmetrical ether formation[J]. ACS sustainable chemistry & engineering, 2016, 4(4): 1963-1973. [32] 詹盈盈. 碳基固体酸催化果糖脱水制备5-羟甲基糠醛的研究[D]. 杭州: 浙江工业大学, 2015. ZHAN Y Y.Preparation of 5-HMF from fructose catalyzed by carbon-based solid acid[D]. Hangzhou: Zhejiang University of Technology, 2015. [33] 黄维, 范同祥. 水热碳化法的研究进展[J]. 材料导报, 2014, 28(S1): 131-135. HUANG W, FAN T X.Research progress of hydrothermal carbonization method[J]. Materials reports, 2014, 28(S1): 131-135. [34] 张玲玲, 刘红茹, 孙和. 直接水热合成法和模板剂法制备碳微球的比较及性能评价[J]. 化工新型材料, 2018, 46(S1): 73-75, 80. ZHANG L L, LIU H R, SUN H.Comparison and evaluation of carbon microspheres prepared by direct hydrothermal and template methods[J]. New chemical materials, 2018, 46(S1): 73-75, 80. [35] 阚玉娜, 陈冰炜, 翟胜丞, 等. 生物质水热碳化及其功能化应用研究进展[J]. 化工新型材料, 2021, 49(12): 43-49. KAN Y N, CHEN B W, ZHAI S C, et al.Research progress on hydrothermal carbonization of biomass and its functional application[J]. New chemical materials, 2021, 49(12): 43-49. [36] 文世涛, 仲美娟, 尚莉莉, 等. 水热炭化法制备生物质基碳纳米材料研究进展[J]. 材料导报, 2021, 35(S2): 28-32. WEN S T, ZHONG M J, SHANG L L, et al.Research advance of biomass-based carbon nanomaterials by hydrothermal carbonization[J]. Materials reports, 2021, 35(S2): 28-32. [37] 刘婉玉, 亓伟, 周劲松, 等. 生物质碳基固体酸催化剂在纤维素水解中的研究进展[J]. 林产化学与工业, 2015, 35(1): 138-144. LIU W Y, QI W, ZHOU J S, et al.Research progress in cellulose hydrolysis by carbonaceous solid acid[J]. Chemistry and industry of forest products, 2015, 35(1): 138-144. [38] YANG H, YAN R, CHEN H, et al.Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007,(12):1781-1788. [39] 王春艳, 申曙光, 孔祥鹏, 等. 升温速率对木质素基固体酸结构及其催化水解纤维素的影响[J]. 化工新型材料, 2022, 50(2): 161-165, 170. WANG C Y, SHEN S G, KONG X P, et al.Influence of heating rate on structure of lignin-based solid acid and their catalytic performance in cellulose hydrolysis[J]. New chemical materials, 2022, 50(2): 161-165, 170. [40] OKAMURA M, TAKAGAKI A, TODA M, et al.Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon[J]. Chemistry of materials, 2006, 18(13): 3039-3045. [41] 方雨豪. 竹炭碳磺酸的制备及其催化纤维素水解性能研究[D]. 杭州: 浙江工业大学, 2018. FANG Y H.Study on the preparation of bamboo carbon-based solid acid and its catalytic properties in the hydrolysis of cellulose[D]. Hangzhou:Zhejiang University of Technology, 2018. [42] 张颖诗, 王艳, 万金泉, 等. 基于固体酸的纤维素非均相催化糖化的研究进展[J]. 化工进展, 2014, 33(11): 2947-2955, 2981. ZHANG Y S, WANG Y, WAN J Q, et al.Heterogeneous saccharification of cellulose by solid acid[J]. Chemical industry and engineering progress, 2014, 33(11): 2947-2955, 2981. [43] 于贺伟. 煤基固体酸的优化制备及催化合成生物柴油特性研究[D]. 济南: 山东大学, 2019. YU H W.Study on optimized preparation and catalytic performance for biodiesel synthesis of coal-based solid acid catalyst[D]. Ji’nan: Shandong University, 2019. [44] 马兵. 竹炭碳磺酸的制备及其在纤维素水解中的应用[D]. 杭州: 浙江工业大学, 2017. MA B B.Preparation of bamboo carbon-based solid acid and its applications in catalytic hydrolysis of cellulose[D]. Hangzhou: Zhejiang University of Technology, 2017. [45] PANG J F, WANG A Q, ZHENG M Y, et al.Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures[J]. Chemical communications, 2010, 46(37): 6935-6937. [46] 申曙光, 王涛, 秦海峰, 等. 不同碳源制备碳基固体酸及其在水解纤维素中的应用[J]. 功能材料, 2012, 43(12): 1598-1601. SHEN S G, WANG T, QIN H F, et al.Synthesis and properties in hydrolytic cellulose of carbon-based solid acids prepared from different carbon sources[J]. Journal of functional materials, 2012, 43(12): 1598-1601. [47] SHEN S G, CAI B, WANG C Y, et al.Preparation of a novel carbon-based solid acid from cocarbonized starch and polyvinyl chloride for cellulose hydrolysis[J]. Applied catalysis A: general, 2014, 473: 70-74. [48] YUAN S J, LI T J, WANG Y M, et al.Double-adsorption functional carbon based solid acids derived from copyrolysis of PVC and PE for cellulose hydrolysis[J]. Fuel, 2019, 237: 895-902. [49] JING S Q, SHEN S G, PENG X, et al.Preparation of a novel solid acid bearing sulfur-containing active groups and evaluation of its activity for cellulose hydrolysis[J]. Fuel processing technology, 2021, 224: 107004. [50] 袁书娟. 强吸附含硼碳基固体酸的制备及其催化纤维素水解的研究[D]. 太原: 太原理工大学, 2019. YUAN S J.Research on Hydrolysis of cellulose with strong adsorption boron-containing carbon-based solid acid[D]. Taiyuan: Taiyuan University of Technology, 2019. [51] ZHU J D, GAN L H, LI B X, et al.Synthesis and characteristics of lignin-derived solid acid catalysts for microcrystalline cellulose hydrolysis[J]. Korean journal of chemical engineering, 2017, 34(1): 110-117. [52] GAN L H, ZHU J D, LYU L.Cellulose hydrolysis catalyzed by highly acidic lignin-derived carbonaceous catalyst synthesized via hydrothermal carbonization[J]. Cellulose, 2017, 24(12): 5327-5339. [53] LIN Q X, ZHANG C H, WANG X H, et al.Impact of activation on properties of carbon-based solid acid catalysts for the hydrothermal conversion of xylose and hemicelluloses[J]. Catalysis today, 2019, 319: 31-40. [54] CHEN G Z, WANG X C, JIANG Y J, et al.Insights into deactivation mechanism of sulfonated carbonaceous solid acids probed by cellulose hydrolysis[J]. Catalysis today, 2019, 319: 25-30. [55] VAN PELT A H, SIMAKOVA O A, SCHIMMING S M, et al. Stability of functionalized activated carbon in hot liquid water[J]. Carbon, 2014, 77: 143-154. [56] LIU Z Y, LIU Z D.Comparison of hydrochar- and pyrochar-based solid acid catalysts from cornstalk: Physiochemical properties, catalytic activity and deactivation behavior[J]. Bioresource technology, 2020, 297: 122477. [57] 李翔宇, 李学琴, 时君友, 等. 生物质炭基磁性固体酸催化剂研究进展[J]. 林产化学与工业, 2017, 37(5): 9-18. LI X Y, LI X Q, SHI J Y, et al.Review on research progress of biomass carbon-based magnetic solid acid catalysts[J]. Chemistry and industry of forest products, 2017, 37(5): 9-18. [58] JIN S Y, GONG J W, YANG C, et al.A recyclable and regenerable solid acid for efficient hydrolysis of cellulose to glucose[J]. Biomass and bioenergy, 2020, 138: 105611. [59] 刘姝娜, 张续成, 亓伟, 等. 磁性碳基固体酸催化剂的制备及其水解工艺优化研究[J]. 太阳能学报, 2020, 41(6): 113-119. LIU S N, ZHANG X C, QI W, et al.Preparation and hydrolysis process optimization of magnetic carbon-based solid acid catalyst[J]. Acta energiae solaris sinica, 2020, 41(6): 113-119. [60] LI H X, SHI W J, ZHANG X H, et al.Catalytic hydrolysis of cellulose to total reducing sugars with superior recyclable magnetic multifunctional MCMB-based solid acid as a catalyst[J]. Journal of chemical technology & biotechnology, 2020, 95(3): 770-780. [61] HU S L, ZENG Y J, WU D Z, et al.A novel magnetic carbon-based solid acid catalyst suitable for efficient hydrolysis of cellulose[J]. Biomass conversion and biorefinery, 2023, 13(3): 2207-2215. [62] ZHANG C B, WANG H Y, LIU F D, et al.Magnetic core-shell Fe3O4@C-SO3H nanoparticle catalyst for hydrolysis of cellulose[J]. Cellulose, 2013, 20(1): 127-134. [63] 于博士, 那海宁, 黄骏成, 等. 富羟基核/壳结构碳基催化促进剂的制备及辅助催化纤维素水解成糖[J]. 化工新型材料, 2023, 51(7): 231-234. YU B S, NA H N, HUANG J C, et al.Preparation of hydroxyl-rich core/shell structured carbon-based catalytic accelerator and auxiliary catalytic hydrolysis of cellulose to glucose[J]. New chemical materials, 2023, 51(7): 231-234. [64] 苏同超. 碳基磁性固体酸催化剂的制备及用于植物废弃物水解产糖[D]. 合肥: 中国科学技术大学, 2017. SU T C.Preparation of magnetic carbonaceous acid catalyst and its application in the hydrolysis of plant wastes to sugars[D]. Hefei: University of Science and Technology of China, 2017. [65] SU J L, QIU M, SHEN F, et al.Efficient hydrolysis of cellulose to glucose in water by agricultural residue-derived solid acid catalyst[J]. Cellulose, 2018, 25(1): 17-22. [66] QI X H, YAN L L, SHEN F, et al.Mechanochemical-assisted hydrolysis of pretreated rice straw into glucose and xylose in water by weakly acidic solid catalyst[J]. Bioresource technology, 2019, 273: 687-691. [67] 凌喆, 赖晨欢, 黄曹兴, 等. 预处理纤维素超分子结构变化机制研究进展[J]. 林业工程学报, 2021, 6(4): 24-34. LING Z, LAI C H, HUANG C X, et al.Research progress in variations of cellulose supramolecular structures via biomass pretreatment[J]. Journal of forestry engineering, 2021, 6(4): 24-34. [68] NI J P, NA H N, SHE Z, et al.Responsive behavior of regenerated cellulose in hydrolysis under microwave radiation[J]. Bioresource technology, 2014, 167: 69-73. [69] TENG N, NI J P, CHEN H Z, et al.Initiating highly effective hydrolysis of regenerated cellulose by controlling transition of crystal form with sulfolane under microwave radiation[J]. ACS sustainable chemistry & engineering, 2016, 4(3): 1507-1511. [70] HU L, ZHAO G, HAO W W, et al.Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes[J]. RSC advances, 2012, 2(30): 11184-11206. [71] MISSION E G, QUITAIN A T, SASAKI M, et al.Synergizing graphene oxide with microwave irradiation for efficient cellulose depolymerization into glucose[J]. Green chemistry, 2017, 19(16): 3831-3843. [72] ZHAI C K, TENG N, PAN B H, et al.Revealing the importance of non-thermal effect to strengthen hydrolysis of cellulose by synchronous cooling assisted microwave driving[J]. Carbohydrate polymers, 2018, 197: 414-421.