基于规则库与PRRL模型的风电功率数据清洗方法

杨海能, 唐杰, 邵武, 刘白杨, 陈日恒

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 416-425.

PDF(2468 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2468 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 416-425. DOI: 10.19912/j.0254-0096.tynxb.2024-0179

基于规则库与PRRL模型的风电功率数据清洗方法

  • 杨海能, 唐杰1,2, 邵武2, 刘白杨2, 陈日恒2
作者信息 +

WIND POWER DATA CLEANING METHOD BASED ON RULE BASE AND PRRL MODEL

  • Yang Haineng, Tang Jie1,2, Shao Wu2, Liu Baiyang2, Chen Riheng2
Author information +
文章历史 +

摘要

为提升风电场原始数据中异常数据的识别精度,提出一种结合规则库与PRRL模型的风电场数据清洗方法。首先依据风电场装机容量等参数建立规则库,提高数据集中正常数据占比。其次,以RANSAC稳健回归算法为核心,线性回归模型为基础,将风速数据作为输出,同时扩展输入变量的多项式特征来捕捉风速与功率之间的非线性关系,构建PRRL稳健回归模型。该模型经过规则库处理后的数据训练,可有效识别原始数据中的异常数据。通过对湖南某风电场的实例数据进行应用测试,结果显示该方法在处理异常数据占比较高数据时,能有效识别其中的异常数据,并降低风电功率预测模型的预测误差。

Abstract

In order to improve the identification accuracy of abnormal data in the original data of wind farms, a wind farm data cleaning method combining a rule base and the PRRL model is proposed. First, a rule base is established based on parameters such as the installed capacity of the wind farm to increase the proportion of normal data in the dataset. Second, the PRRL robust regression model is constructed using the RANSAC robust regression algorithm as the core and the linear regression model as the foundation, taking wind speed data as the output and expanding the polynomial features of input variables to capture the nonlinear relationship between wind speed and power. The model is trained on data processed by the rule base, effectively identifying abnormal data in the original dataset. Application testing using sample data from a wind farm in Hunan shows that this method can effectively identify abnormal data when processing the data with a high proportion of abnormal data, and reduce the prediction error of the wind power forecasting model.

关键词

风电场 / 数据清洗 / 异常检测 / 规则库 / 回归分析 / 稳健回归分析

Key words

wind farm / data cleaning / anomaly detection / rule base / regression analysis / robust regression analysis

引用本文

导出引用
杨海能, 唐杰, 邵武, 刘白杨, 陈日恒. 基于规则库与PRRL模型的风电功率数据清洗方法[J]. 太阳能学报. 2024, 45(12): 416-425 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0179
Yang Haineng, Tang Jie, Shao Wu, Liu Baiyang, Chen Riheng. WIND POWER DATA CLEANING METHOD BASED ON RULE BASE AND PRRL MODEL[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 416-425 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0179
中图分类号: TK81   

参考文献

[1] 李莉, 梁袁, 林娜, 等. 考虑时空相关性的风电机组风速清洗方法[J]. 太阳能学报, 2024, 45(6): 461-469.
LI L, LIANG Y, LIN N, et al.Data cleaning method considering temporal and spatial correlation for measured wind speed of wind turbines[J]. Acta energiae solaris sinica, 2024, 45(6): 461-469.
[2] 吴永斌, 张建忠, 袁正舾, 等. 风电场风功率异常数据识别与清洗研究综述[J]. 电网技术, 2023, 47(6): 2367-2380.
WU Y B, ZHANG J Z, YUAN Z X, et al.Review on identification and cleaning of abnormal wind power data for wind farms[J]. Power system technology, 2023, 47(6): 2367-2380.
[3] WANG S, LI B, LI G Z, et al.Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration[J]. Applied energy, 2021, 292: 116851.
[4] 武煜昊, 王永生, 徐昊, 等. 风电输出功率预测技术研究综述[J]. 计算机科学与探索, 2022, 16(12): 2653-2677.
WU Y H, WANG Y S, XU H, et al.Survey of wind power output power forecasting technology[J]. Journal of frontiers of computer science and technology, 2022, 16(12): 2653-2677.
[5] 许梦田, 王洪哲, 赵成萍, 等. 基于短期风功率预测的数据预处理算法研究[J]. 可再生能源, 2019, 37(1): 119-125.
XU M T, WANG H Z, ZHAO C P, et al.Research on data preprocessing policy based on short-term wind power prediction[J]. Renewable energy resources, 2019, 37(1): 119-125.
[6] XIANG L, YANG X, HU A J, et al.Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks[J]. Applied energy, 2022, 305: 117925.
[7] 沈小军, 付雪姣, 周冲成, 等. 风电机组风速-功率异常运行数据特征及清洗方法[J]. 电工技术学报, 2018, 33(14): 3353-3361.
SHEN X J, FU X J, ZHOU C C, et al.Characteristics of outliers in wind speed-power operation data of wind turbines and its cleaning method[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3353-3361.
[8] 梅勇, 李霄, 胡在春, 等. 基于风电机组控制原理的风功率数据识别与清洗方法[J]. 动力工程学报, 2021, 41(4): 316-322, 329.
MEI Y, LI X, HU Z C, et al.Identification and cleaning of wind power data methods based on control principle of wind turbine generator system[J]. Journal of Chinese Society of Power Engineering, 2021, 41(4): 316-322, 329.
[9] MORRISON R, LIU X L, LIN Z.Anomaly detection in wind turbine SCADA data for power curve cleaning[J]. Renewable energy, 2022, 184: 473-486.
[10] 钱小毅, 张宇献. 基于动态特征矩阵的k近邻风电机组故障检测方法[J]. 仪器仪表学报, 2019, 40(6): 202-212.
QIAN X Y, ZHANG Y X.Fault detection of wind turbines using k-nearest neighbor based on dynamic feature matrix[J]. Chinese journal of scientific instrument, 2019, 40(6): 202-212.
[11] 雷萌, 郭鹏, 刘博嵩. 基于自适应DBSCAN算法的风电机组异常数据识别研究[J]. 动力工程学报, 2021, 41(10): 859-865.
LEI M, GUO P, LIU B S.Study on abnormal data recognition of wind turbines based on adaptive DBSCAN algorithm[J]. Journal of Chinese Society of Power Engineering, 2021, 41(10): 859-865.
[12] 肖碧涛, 赖晓路, 郭鹏, 等. 高斯混合模型风电机组异常数据识别方法研究[J]. 可再生能源, 2023, 41(8): 1051-1056.
XIAO B T, LAI X L, GUO P, et al.Abnormal data identification for wind turbine based on Gaussian mixture model[J]. Renewable energy resources, 2023, 41(8): 1051-1056.
[13] 李特, 王荣喜, 高建民. 风电机组数据采集与监控系统异常数据识别方法[J]. 西安交通大学学报, 2024, 58(3): 106-116.
LI T, WANG R X, GAO J M.A method for abnormal data recognition of wind turbine supervisory control and data acquisition systems[J]. Journal of Xi'an Jiaotong University, 2024, 58(3): 106-116.
[14] 夏延秋, 夏和民, 冯欣. 一种基于风功率曲线的SCADA数据清洗方法研究[J]. 可再生能源, 2022, 40(11): 1499-1504.
XIA Y Q, XIA H M, FENG X.Research on SCADA data cleaning method based on wind power curve[J]. Renewable energy resources, 2022, 40(11): 1499-1504.
[15] 金晓航, 泮恒拓, 徐正国. 数据驱动的风电机组变桨系统状态监测[J]. 太阳能学报, 2022, 43(4): 409-417.
JIN X H, PAN H T, XU Z G.Condition monitoring of wind turbine pitch system using data-driven approach[J]. Acta energiae solaris sinica, 2022, 43(4): 409-417.
[16] 王文婷, 安爱民, 保承家, 等. 基于改进代价敏感直推式支持向量机的发电企业滥用市场力识别[J]. 电力系统保护与控制, 2022, 50(11): 102-111.
WANG W T, AN A M, BAO C J, et al.Identification of abuse of market power by power generation companies based on an improved cost-sensitive transductive support vector machine[J]. Power system protection and control, 2022, 50(11): 102-111.
[17] 张浩田, 温蜜, 李晋国, 等. 数据驱动的时间注意力卷积风电功率预测模型[J]. 太阳能学报, 2022, 43(10): 167-176.
ZHANG H T, WEN M, LI J G, et al.Data driven time attention convolution wind power prediction model[J]. Acta energiae solaris sinica, 2022, 43(10): 167-176.
[18] 娄建楼, 胥佳, 陆恒, 等. 基于功率曲线的风电机组数据清洗算法[J]. 电力系统自动化, 2016, 40(10): 116-121.
LOU J L, XU J, LU H, et al.Wind turbine data-cleaning algorithm based on power curve[J]. Automation of electric power systems, 2016, 40(10): 116-121.
[19] 徐岩, 安卫凤. 基于改进随机抽样一致算法的视觉SLAM[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(10): 1069-1076.
XU Y, AN W F.Visual SLAM based on the improved RANSAC algorithm[J]. Journal of Tianjin University (science and technology), 2020, 53(10): 1069-1076.

基金

湖南省自然科学基金(2022JJ50206; 2023JJ50263); 邵阳学院研究生创新项目(CX2023SY060)

PDF(2468 KB)

Accesses

Citation

Detail

段落导航
相关文章

/