多元纳米颗粒增强石蜡相变储热材料的热物理性能实验研究

高泓源, 黄超, 魏高升, 杜小泽

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 483-490.

PDF(4202 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4202 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 483-490. DOI: 10.19912/j.0254-0096.tynxb.2024-0311
第二十七届中国科协年会学术论文

多元纳米颗粒增强石蜡相变储热材料的热物理性能实验研究

  • 高泓源, 黄超, 魏高升, 杜小泽
作者信息 +

EXPERIMENTAL STUDY ON THERMOPHYSICAL PERFORMANCE ENHANCEMENT OF PARAFFIN PHASE CHANGE MATERIALS WITH HYBRID NANOPARTICLES

  • Gao Hongyuan, Huang Chao, Wei Gaosheng, Du Xiaoze
Author information +
文章历史 +

摘要

通过在石蜡中添加氧化铝(Al2O3)、氧化钛(TiO2)纳米粒子、碳纳米纤维(CNF)以及Al2O3+TiO2和Al2O3+CNF组合体开展相变储热材料的热物性强化研究。通过实验研究添加单一颗粒和多元颗粒对石蜡热物性的影响。以Span80为表面活性剂,成功制备了不同浓度的纳米复合相变材料。采用差示扫描量热仪和瞬态热线法测定了样品的热物性。利用扫描电子显微镜和傅里叶变换红外光谱对制备样品的表面形貌和化学结构进行表征。研究结果表明,Al2O3、TiO2和CNF纳米颗粒在相变材料中实现了均匀分散,未发生化学反应;随着Al2O3、TiO2和CNF颗粒的加入,单一和多元纳米复合相变储热材料潜热略有降低。与纯石蜡相比,质量分数1.0%的Al2O3+CNF多元复合材料导热系数提高了36.79%,液相比热容提升32.07%。Al2O3和CNF组合对相变材料热物性具有协同强化效果。本文的研究可为持续推进太阳能储热容技术的利用提供参考。

Abstract

Paraffin waxes have great application potential in the field of low-temperature solar energy storage technology due to their wide phase transition temperature range, moderate latent heat and good chemical compatibility. In order to enhance the heat transfer/storage performance of paraffin wax, this paper gives thermophysical property enhancement study of nanocomposite phase change materials NCPCMs) dispersed by Al2O3, TiO2 nanoparticles, carbon nano-fiber (CNF), Al2O3+TiO2 and Al2O3+CNF in paraffin. The effects of adding mono and hybrid particles on the thermophysical properties of paraffin are experimentally investigated. The samples of NCPCMs with different concentrations are successfully prepared with Span80 as surfactant. The differential scanning calorimeter and transient hot-wire method are used to measure the thermophysical properties of the samples. A scanning electron microscopy and a Fourier transform infrared spectroscopy are used to characterize the surface morphologies and chemical structures of the prepared samples. The results show that Al2O3, TiO2 and CNF nanoparticles have uniformly dispersed in both mono and hybrid NCPCMs without any chemical reaction. The latent heat of paraffin decreases with the addition of Al2O3, TiO2 and CNF nanoparticles in both mono and hybrid NCPCMs slightly. Compared with pure paraffin, the thermal conductivity of Al2O3+CNF composite with mass fraction of 1.0% increased by 36.79%, and the specific heat of liquid phase increased by 32.07%. As a conclusion, the hybrid nanoparticles of Al2O3+CNF shows significant potential for thermophysical property enhancement of phase change materials.

关键词

纳米颗粒 / 石蜡 / 储热 / 相变材料 / 太阳能

Key words

nanoparticles / paraffin waxes / heat storage / phase change materials / solar energy

引用本文

导出引用
高泓源, 黄超, 魏高升, 杜小泽. 多元纳米颗粒增强石蜡相变储热材料的热物理性能实验研究[J]. 太阳能学报. 2025, 46(7): 483-490 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0311
Gao Hongyuan, Huang Chao, Wei Gaosheng, Du Xiaoze. EXPERIMENTAL STUDY ON THERMOPHYSICAL PERFORMANCE ENHANCEMENT OF PARAFFIN PHASE CHANGE MATERIALS WITH HYBRID NANOPARTICLES[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 483-490 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0311
中图分类号: TK02   

参考文献

[1] MICHAELSEN S, SCHAEFER J, PETERSON M S.Fluctuating asymmetry in Menidia beryllina before and after the 2010 Deepwater Horizon oil spill[J]. PLoS one, 2015, 10(2): e0118742.
[2] 陈逸文, 赵晋斌, 李军舟, 等. 电力低碳转型背景下氢储能的挑战与展望[J]. 发电技术, 2023, 44(3): 296-304.
CHEN Y W, ZHAO J B, LI J Z, et al.Challenges and prospects of hydrogen energy storage under the background of low-carbon transformation of power industry[J]. Power generation technology, 2023, 44(3): 296-304.
[3] TAN F L, TSO C P.Cooling of mobile electronic devices using phase change materials[J]. Applied thermal engineering, 2004, 24(2/3): 159-169.
[4] 王泽旭, 贺可寒, 孙晨, 等. 采用相变热开关的软包电池热管理研究[J]. 发电技术, 2022, 43(5): 810-822.
WANG Z X, HE K H, SUN C, et al.Research on battery thermal management of pouch cell using a phase change material-based thermal switch[J]. Power generation technology, 2022, 43(5): 810-822.
[5] 季畅, 姜文超, 杨薛明. 纳米ZnO/三元氯化物熔盐热物性及腐蚀特性实验研究[J]. 太阳能学报, 2023, 44(11): 426-433.
JI C, JIANG W C, YANG X M.Experimental study on thermal properties and corrosion properties of nano-zno/ternary chloride molten salt[J]. Acta energiae solaris sinica, 2023, 44(11): 426-433.
[6] 侯俊英, 杨金星, 郝建军, 等. 十八醇/ZIF-8定形复合相变材料制备及其蓄热器模拟[J]. 太阳能学报, 2023, 44(11): 434-442.
HOU J Y, YANG J X, HAO J J, et al.Fabrication of octadecanol/zif-8 shape stablized composite phase change material and thermal simulation of heat accumulator[J]. Acta energiae solaris sinica, 2023, 44(11): 434-442.
[7] ARSHAD A, JABBAL M, YAN Y Y, et al.The micro-/ nano-PCMs for thermal energy storage systems: a state of art review[J]. International journal of energy research, 2019, 43(11): 5572-5620.
[8] WANG J, LI Y X, ZHENG D, et al.Preparation and thermophysical property analysis of nanocomposite phase change materials for energy storage[J]. Renewable and sustainable energy reviews, 2021, 151: 111541.
[9] BABAPOOR A, KARIMI G.Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: comparison and optimization[J]. Applied thermal engineering, 2015, 90: 945-951.
[10] SAMI S, ETESAMI N.Improving thermal characteristics and stability of phase change material containing TiO2 nanoparticles after thermal cycles for energy storage[J]. Applied thermal engineering, 2017, 124: 346-352.
[11] WANG J F, XIE H Q, GUO Z X, et al.Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles[J]. Applied thermal engineering, 2014, 73(2): 1541-1547.
[12] ARSHAD A, JABBAL M, YAN Y Y.Preparation and characteristics evaluation of mono and hybrid nano-enhanced phase change materials (NePCMs) for thermal management of microelectronics[J]. Energy conversion and management, 2020, 205: 112444.
[13] ARSHAD A, ALI H M, KHUSHNOOD S, et al.Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: effect of pin-fin diameter[J]. International journal of heat and mass transfer, 2018, 117: 861-872.
[14] HARIKRISHNAN S, DEEPAK K, KALAISELVAM S.Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems[J]. Journal of thermal analysis and calorimetry, 2014, 115(2): 1563-1571.
[15] COLLA L, FEDELE L, MANCIN S, et al.Nano-PCMs for passive electronic cooling applications[J]. Journal of physics: conference series, 2015, 655: 012030.
[16] BAGHBANZADEH M, RASHIDI A, RASHTCHIAN D, et al.Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids[J]. Thermochimica acta, 2012, 549: 87-94.
[17] MUNKHBAYAR B, TANSHEN M R, JEOUN J, et al.Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics[J]. Ceramics international, 2013, 39(6): 6415-6425.
[18] HAN Z H, YANG B, KIM S H, et al.Application of hybrid sphere/carbon nanotube particles in nanofluids[J]. Nanotechnology, 2007, 18(10): 105701.
[19] LEE G W, LEE J I, LEE S S, et al.Comparisons of thermal properties between inorganic filler and acid-treated multiwall nanotube/polymer composites[J]. Journal of materials science, 2005, 40(5): 1259-1263.
[20] SARBOLOOKZADEH HARANDI S, KARIMIPOUR A, AFRAND M, et al.An experimental study on thermal conductivity of F-MWCNTs-Fe3O4/EG hybrid nanofluid: effects of temperature and concentration[J]. International communications in heat and mass transfer, 2016, 76: 171-177.
[21] TONG X Y, LI D, YANG R T, et al.Experimental investigation on photothermal properties of Zn-ZnO/paraffin hybrid nanofluids[J]. Journal of thermal analysis and calorimetry, 2023, 148(20): 11029-11040.
[22] TOGHRAIE D, CHAHARSOGHI V A, AFRAND M.Measurement of thermal conductivity of ZnO-TiO2/EG hybrid nanofluid[J]. Journal of thermal analysis and calorimetry, 2016, 125(1): 527-535.
[23] HEMMAT ESFE M, WONGWISES S, NADERI A, et al.Thermal conductivity of Cu/TiO2-water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation[J]. International communications in heat and mass transfer, 2015, 66: 100-104.
[24] NOURANI M, HAMDAMI N, KERAMAT J, et al.Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity[J]. Renewable energy, 2016, 88: 474-482.
[25] ZHANG Y Y, FENG D L, FENG Y H, et al.Effect of carbon nanotubes on melting latent heat of paraffin wax: an experimental and simulated research[J]. Journal of energy storage, 2022, 53: 105229.
[26] TIAN H Q, WANG W L, DING J, et al.Thermal conductivities and characteristics of ternary eutectic chloride/expanded graphite thermal energy storage composites[J]. Applied energy, 2015, 148: 87-92.
[27] ARSHAD A, JABBAL M, YAN Y Y.Thermophysical characteristics and application of metallic-oxide based mono and hybrid nanocomposite phase change materials for thermal management systems[J]. Applied thermal engineering, 2020, 181: 115999.
[28] KUMARESAN V, VELRAJ R.Experimental investigation of the thermo-physical properties of water-ethylene glycol mixture based CNT nanofluids[J]. Thermochimica acta, 2012, 545: 180-186.

基金

国家自然科学基金(52176069)

PDF(4202 KB)

Accesses

Citation

Detail

段落导航
相关文章

/