基于超螺旋滑模的ISOP-DAB变换器混合控制策略

陶海军, 赵蒙恩, 郑征, 宋佳瑶, 张晨杰, 黄涛

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 127-134.

PDF(2540 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2540 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 127-134. DOI: 10.19912/j.0254-0096.tynxb.2024-0315
第二十七届中国科协年会学术论文

基于超螺旋滑模的ISOP-DAB变换器混合控制策略

  • 陶海军1,2, 赵蒙恩1, 郑征1,2, 宋佳瑶1, 张晨杰1, 黄涛3
作者信息 +

HYBRID CONTROL STRATEGY OF ISOP-DAB CONVERTER BASED ON SUPER TWISTING SLIDING MODE

  • Tao Haijun1,2, Zhao Meng’en1, Zheng Zheng1,2, Song Jiayao1, Zhang Chenjie1, Huang Tao3
Author information +
文章历史 +

摘要

在直流微电网中,针对ISOP-DAB变换器各模块功率不平衡、动态性能差以及变换器回流功率大的问题,该文在扩展移相调制下将双环解耦策略与超螺旋滑模相结合,均压环采用PI控制、输出电压环采用超螺旋滑模控制。在扩展移相调制下,分析单模块双有源桥(DAB)变换器的两种传输功率模型、软开关特性,建立变换器的降阶模型。应用KKT条件法求解各模块的最优内移相比D1i,通过降阶模型及超螺旋算法设计超螺旋滑模控制器,且与均压环共同作用生成外移相比D2i,以调节变换器输出电压。最后,搭建两模块ISOP-DAB实验平台进行实验验证,实验结果表明ISOP-DAB系统能在保证各子模块输入均压的同时提高变换器的动态性能,且有效减小变换器产生的回流功率。

Abstract

In DC microgrid, aiming at the problems of power imbalance, poor dynamic performance and high backflow power of ISOP-DAB converter, in this paper, the double-loop decoupling strategy is combined with the super twisting sliding mode under extended phase-shift modulation. PI control is used in voltage balancing ring and super twisting sliding mode control is used in output voltage ring. Under extended phase shift modulation, two transmission power models and soft switching characteristics of single-module DAB converter are analyzed, establish the reduced order model of the converter. KKT condition method is applied to solve the optimal internal shift ratio D1i of each module, and the super twisting sliding mode controller is designed by the reduced order model and the super twisting algorithm, and the external shift ratio D2i is generated by the interaction with the pressure balancing ring to achieve power balance and improve dynamic performance. Finally, a two-module ISOP-DAB experimental platform is built for experimental verification. The experimental results show that the ISOP-DAB system can improve the dynamic performance of the converter while ensuring the input voltage balancing of each submodule, and effectively reduce the backflow power generated by the converter.

关键词

直流微电网 / 超螺旋滑模控制 / 动态性能 / ISOP-DAB变换器 / 回流功率优化

Key words

DC microgrid / super-twisting sliding mode control / dynamic performance / ISOP-DAB converter / backflow power optimization

引用本文

导出引用
陶海军, 赵蒙恩, 郑征, 宋佳瑶, 张晨杰, 黄涛. 基于超螺旋滑模的ISOP-DAB变换器混合控制策略[J]. 太阳能学报. 2025, 46(7): 127-134 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0315
Tao Haijun, Zhao Meng’en, Zheng Zheng, Song Jiayao, Zhang Chenjie, Huang Tao. HYBRID CONTROL STRATEGY OF ISOP-DAB CONVERTER BASED ON SUPER TWISTING SLIDING MODE[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 127-134 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0315
中图分类号: TM46   

参考文献

[1] 贾燕冰, 田晋杰, 任春光, 等. 基于变换器级联的直流微电网混合储能系统及控制[J]. 太阳能学报, 2020, 41(5): 273-280.
JIA Y B, TIAN J J, REN C G, et al.Research on DC microgrid HESS based on converter cascade structure[J]. Acta energiae solaris sinica, 2020, 41(5): 273-280.
[2] 李彦君, 张兴, 赵文广, 等. 基于拓展移相调制的双有源桥回流功率优化策略[J]. 太阳能学报, 2022, 43(3): 216-222.
LI Y J, ZHANG X, ZHAO W G, et al.Optimized strategy of dual active bridge reflux power based on extended phase shift modulation[J]. Acta energiae solaris sinica, 2022, 43(3): 216-222.
[3] SHI J J, LUO J, HE X N.Common-duty-ratio control of input-series output-parallel connected phase-shift full-bridge DC-DC converter modules[J]. IEEE transactions on power electronics, 2011, 26(11): 3318-3329.
[4] RUAN X B, CHEN W, CHENG L L, et al.Control strategy for input-series-output-parallel converters[J]. IEEE transactions on industrial electronics, 2009, 56(4): 1174-1185.
[5] AYYANAR R, GIRI R, MOHAN N.Active input-voltage and load-current sharing in input-series and output-parallel connected modular DC-DC converters using dynamic input-voltage reference scheme[J]. IEEE transactions on power electronics, 2004, 19(6): 1462-1473.
[6] 赵一佳, 王允建, 王要东, 等. 单移相输入串联输出并联的功率预测控制[J]. 浙江大学学报(工学版), 2020, 54(1): 160-168.
ZHAO Y J, WANG Y J, WANG Y D, et al.Power prediction control of ISOP based on single phase shift control[J]. Journal of Zhejiang University (engineering science), 2020, 54(1): 160-168.
[7] 陶海军, 王宏祎, 杨乃通. 基于扩展移相的ISOP-DAB变换器混合优化控制方法[J]. 电工电能新技术, 2024, 43(1): 14-23.
TAO H J, WANG H Y, YANG N T.Hybrid optimal control method for ISOP-DAB converter based on extended phase shifting[J]. Advanced technology of electrical engineering and energy, 2024, 43(1): 14-23.
[8] AN F, SONG W S, YU B, et al.Model predictive control with power self-balancing of the output parallel DAB DC-DC converters in power electronic traction transformer[J]. IEEE journal of emerging and selected topics in power electronics, 2018, 6(4): 1806-1818.
[9] HOU N, GUNAWARDENA P, WU X S, et al.An input-oriented power sharing control scheme with fast-dynamic response for ISOP DAB DC-DC converter[J]. IEEE transactions on power electronics, 2022, 37(6): 6501-6510.
[10] 曾进辉, 梁博文, 余雪萍, 等. 考虑电流应力优化的ISOP-DAB变换器扰动均压控制策略[J]. 电网技术, 2023, 47(11): 4448-4457.
ZENG J H, LIANG B W, YU X P, et al.Disturbance voltage sharing control of ISOP-DAB converter considering current stress optimization[J]. Power system technology, 2023, 47(11): 4448-4457.
[11] 范恩泽, 赵鲁, 李耀华, 等. 一种输入串联输出并联双有源桥变换器输入电压自平衡结构[J]. 电力系统保护与控制, 2023, 51(23): 141-150.
FAN E Z, ZHAO L, LI Y H, et al.A structure with IVS self-balancing for an ISOP-DAB converter[J]. Power system protection and control, 2023, 51(23): 141-150.
[12] 蔡逢煌, 林俊腾, 江加辉, 等. 结合电流应力优化的ISOP-DAB变换器电压均衡控制[J]. 太阳能学报, 2023, 44(10): 90-96.
CAI F H, LIN J T, JIANG J H, et al.Voltage balance control of ISOP-DAB converters with current stress optimization[J]. Acta energiae solaris sinica, 2023, 44(10): 90-96.
[13] 张灿, 吕世轩, 胡润泽, 等. 输入串联输出并联型双有源全桥DC-DC变换器模型预测控制方法[J]. 电力建设, 2024, 45(3): 87-96.
ZHANG C, LYU S X, HU R Z, et al.Research on model predictive control method for input-series-output-parallel dual-active full-bridge DC-DC converter[J]. Electric power construction, 2024, 45(3): 87-96.

基金

河南省重点研发专项(241111241700); 河南省科技攻关项目(252102241041)

PDF(2540 KB)

Accesses

Citation

Detail

段落导航
相关文章

/