一种基于遗传算法改进粒子群算法的光储氢并网型微电网容量配置优化模型研究

徐展鹏, 陈福新, 杨雪凡, 卢琴芬

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 144-153.

PDF(2042 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2042 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 144-153. DOI: 10.19912/j.0254-0096.tynxb.2024-0319
第二十七届中国科协年会学术论文

一种基于遗传算法改进粒子群算法的光储氢并网型微电网容量配置优化模型研究

  • 徐展鹏1, 陈福新1, 杨雪凡2, 卢琴芬2
作者信息 +

RESEARCH ON OPTIMIZATION MODEL OF CAPACITY CONFIGURATION OF PV/STORAGE/HYDROGEN GRID-CONNECTED MICROGRID BASED ON IMPROVED PSO ALGORITHM WITH GENETIC ALGORITHM

  • Xu Zhanpeng1, Chen Fuxin1, Yang Xuefan2, Lu Qinfen2
Author information +
文章历史 +

摘要

以并网型光储氢微电网为研究对象,为提升其可再生能源消纳能力、碳减排能力和经济性,提出一种基于遗传算法改进粒子群算法的容量配置优化模型。优化模型目标函数为最大年综合利润,不仅将投资运维、绿证交易和碳交易机制引入系统运行成本和收益,且提出一种基于电氢储能实时收益系数的协调控制策略,使得光氢利润基于分时电价进行实时变化、储能设备的出力顺序根据实时收益系数来优化;优化变量为光、氢与储能的容量;优化方法为遗传算法改进的粒子群优化算法,其在改进粒子群优化算法引入遗传算法的思想,对粒子种群的位置进行选择、交叉与变异操作,提高全局优化能力。通过优化设计实例与影响因素分析实例,验证了优化模型的有效性。

Abstract

Taking PV/storage/hydrogen grid-connected microgrid as research objective, this study proposes a capacity configuration optimization model by improved PSO algorithm with genetic algorithm(GA) in order to improve its renewable energy consumption capacity, carbon emission reduction capacity and economic output. The optimization objective is maximum annual comprehensive profit, which not only introduces investment, operation and maintenance cost, green certificate trading revenue and carbon trading cost into operating cost and profit of system, but also proposes a coordination control strategy based on the real-time revenue coefficient of electric-hydrogen-storage. Therefore, the profitability of PV and hydrogen varies in real-time based on time-of-use price, and the dispatch priority of energy storage equipment is optimized according to the real-time revenue coefficient. The optimization variables are the capacities of PV, hydrogen and storage. The optimization method is an improved PSO algorithm incorporating GA concepts. By the operation of selection, crossover and mutation of the particle population position, the capacity of global optimization is improved. The effectiveness of optimization model is verified by both optimization design case and influence analysis case.

关键词

光氢储微电网 / 并网型 / 容量配置 / 遗传算法 / 改进粒子群优化算法

Key words

PV/storage/hydrogen microgrid / grid-connected / capacity configuration / genetic algorithm (GA) / improved particle swarm optimization (PSO) algorithm

引用本文

导出引用
徐展鹏, 陈福新, 杨雪凡, 卢琴芬. 一种基于遗传算法改进粒子群算法的光储氢并网型微电网容量配置优化模型研究[J]. 太阳能学报. 2025, 46(7): 144-153 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0319
Xu Zhanpeng, Chen Fuxin, Yang Xuefan, Lu Qinfen. RESEARCH ON OPTIMIZATION MODEL OF CAPACITY CONFIGURATION OF PV/STORAGE/HYDROGEN GRID-CONNECTED MICROGRID BASED ON IMPROVED PSO ALGORITHM WITH GENETIC ALGORITHM[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 144-153 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0319
中图分类号: TM721.1   

参考文献

[1] 胡迪, 丁明, 毕锐, 等. 光伏和风电互补性对高渗透率可再生能源集群接入规划影响分析[J]. 中国电机工程学报, 2020, 40(3): 821-836.
HU D, DING M, BI R, et al.Impact analysis of PV and WT complementarity on access planning of high penetrated renewable energy cluster[J]. Proceedings of the CSEE, 2020, 40(3): 821-836.
[2] 段新会, 黄嵘, 齐传杰, 等. 计及碳交易与需求响应的微能源网双层优化模型[J]. 太阳能学报, 2024, 45(3): 310-318.
DUAN X H, HUANG R, QI C J, et al.Bi-level optimization model for micro energy grid considering carbon trading and demand response[J]. Acta energiae solaris sinica, 2024, 45(3): 310-318.
[3] 苏浩, 张建成, 王宁, 等. 基于分层优化的大容量混合储能系统能量管理策略[J]. 高电压技术, 2018, 44(4): 1177-1186.
SU H, ZHANG J C, WANG N, et al.Energy management strategy of large-scale hybrid energy storage system based on layered optimization[J]. High voltage engineering, 2018, 44(4): 1177-1186.
[4] WANG H, WANG T X, XIE X H, et al.Optimal capacity configuration of a hybrid energy storage system for an isolated microgrid using quantum-behaved particle swarm optimization[J]. Energies, 2018, 11(2): 454.
[5] 刘勤, 魏明奎, 周全, 等. 计及电量成本和系统自供电可靠性的西南地区微电网容量优化配置研究[J]. 电力系统保护与控制, 2020, 48(10): 139-145.
LIU Q, WEI M K, ZHOU Q, et al.Research on capacity optimization configuration of the Southwestern China microgrid considering electricity cost and system self-power supply reliability[J]. Power system protection and control, 2020, 48(10): 139-145.
[6] 赵波, 包侃侃, 徐志成, 等. 考虑需求侧响应的光储并网型微电网优化配置[J]. 中国电机工程学报, 2015, 35(21): 5465-5474.
ZHAO B, BAO K K, XU Z C, et al.Optimal sizing for grid-connected PV-and-storage microgrid considering demand response[J]. Proceedings of the CSEE, 2015, 35(21): 5465-5474.
[7] 陈燚, 何山, 谢少华, 等. 基于合作博弈的风-光-电氢微网容量配置[J]. 太阳能学报, 2024, 45(2): 395-405.
CHEN Y, HE S, XIE S H, et al.Capacity configuration of wind-photovoltaic-electric hydrogen microgrid based on cooperative game[J]. Acta energiae solaris sinica, 2024, 45(2): 395-405.
[8] 李蕊睿, 李奇, 蒲雨辰, 等. 计及功率交互约束的含电-氢混合储能的多微电网系统容量优化配置[J]. 电力系统保护与控制, 2022, 50(14): 53-64.
LI R R, LI Q, PU Y C, et al.Optimal configuration of an electric-hydrogen hybrid energy storage multi-microgrid system considering power interaction constraints[J]. Power system protection and control, 2022, 50(14): 53-64.
[9] 李奇, 赵淑丹, 蒲雨辰, 等. 考虑电氢耦合的混合储能微电网容量配置优化[J]. 电工技术学报, 2021, 36(3): 486-495.
LI Q, ZHAO S D, PU Y C, et al.Capacity optimization of hybrid energy storage microgrid considering electricity-hydrogen coupling[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 486-495.
[10] 希望·阿不都瓦依提, 吕海鹏, 晁勤. 基于非合作博弈的风-光-氢微电网容量优化配置[J]. 电力工程技术, 2022, 41(2): 110-118.
XIWANG·ABUDUWAYITI, LYU H P, CHAO Q. Optimal capacity configuration of wind-photovoltaic-hydrogen microgrid based on non-cooperative game theory[J]. Electric power engineering technology, 2022, 41(2): 110-118.
[11] 王若谷, 常小强, 高欣, 等. 并网型风光氢储微电网容量优化配置研究[J]. 电力电容器与无功补偿, 2024, 45(2): 151-159.
WANG R G, CHANG X Q, GAO X, et al.Research on capacity optimization configuration of grid-connected wind/PV/hydrogen/storage micro grid[J]. Power capacitor & reactive power compensation, 2024, 45(2): 151-159.
[12] 赵娜, 张莲, 王士彬, 等. 并网型风光氢储微电网容量优化配置[J]. 湖南电力, 2023, 43(4): 48-55.
ZHAO N, ZHANG L, WANG S B, et al.Capacity optimization configuration of grid-connected wind-solar-hydrogen-storage microgrid[J]. Hunan electric power, 2023, 43(4): 48-55.
[13] 韩莹, 于三川, 李荦一, 等. 计及阶梯式碳交易的风光氢储微电网低碳经济配置方法[J]. 高电压技术, 2022, 48(7): 2523-2533.
HAN Y, YU S C, LI L Y, et al.Low-carbon and economic configuration method for solar hydrogen storage microgrid including stepped carbon trading[J]. High voltage engineering, 2022, 48(7): 2523-2533.
[14] 王佳旭, 苗世洪, 姚福星, 等. 考虑全寿命周期碳计量和碳交易机制的多目标微电网系统容量优化配置研究[J]. 现代电力, 2025, 42(2): 263-271.
WANG J X, MIAO S H, YAO F X, et al.Multi-objective capacity optimization configuration in microgrid considering life cycle carbon metering and carbon trading mechanism[J], Modern electric power, 2025, 42(2): 263-271.
[15] 肖白, 刘健康, 张博, 等. 考虑阶梯碳交易和需求响应的含氢储能的并网型微电网优化配置[J]. 电力自动化设备, 2023, 43(1): 121-129.
XIAO B, LIU J K, ZHANG B, et al.Optimal configuration of grid-connected microgrid with hydrogen energy storage considering ladder-type carbon trading and demand response[J]. Electric power automation equipment, 2023, 43(1): 121-129.
[16] 原希尧, 王关涛, 朱若源, 等. 碳-绿色证书交易机制下考虑回收P2G余热和需求响应的PIES优化调度[J]. 电力建设, 2023, 44(3): 25-35.
YUAN X Y, WANG G T, ZHU R Y, et al.Optimal scheduling of park integrated energy system with P2G waste heat recovery and demand response under carbon-green certificate trading mechanism[J]. Electric power construction, 2023, 44(3): 25-35.
[17] 张虹, 孟庆尧, 王明晨, 等. 考虑火电机组参与绿证购买交易的含氢综合能源系统经济低碳调度策略[J]. 电力系统保护与控制, 2023, 51(3): 26-35.
ZHANG H, MENG Q Y, WANG M C, et al.Economic and low-carbon dispatch strategy of a hydrogen-containing integrated energy system considering thermal power units participating in green certificate purchase trading[J]. Power system protection and control, 2023, 51(3): 26-35.
[18] 左冠林, 郭红霞, 林文智, 等. 考虑低碳制氢的微电网优化配置[J]. 电力自动化设备, 2023, 43(2): 9-18.
ZUO G L, GUO H X, LIN W Z, et al.Optimal configuration of microgrid considering low-carbon hydrogen production[J]. Electric power automation equipment, 2023, 43(2): 9-18.
[19] 曹雨微, 郭晓鹏, 董厚琦, 等. 计及消纳责任权重的区域综合能源系统运行优化研究[J]. 华北电力大学学报(自然科学版), 2022, 49(3): 84-95.
CAO Y W, GUO X P, DONG H Q, et al.Operation optimization of regional integrated energy system under responsibility of renewable energy consumption[J]. Journal of North China Electric Power University (natural science edition), 2022, 49(3): 84-95.
[20] 胡骅, 徐冲, 吴汕, 等. 影响用户侧分布式发电经济性因素分析[J]. 电力自动化设备, 2008, 28(5): 29-33.
HU H, XU C, WU S, et al.Analysis of factors influencing economy of customer-side distributed generation[J]. Electric power automation equipment, 2008, 28(5): 29-33.
[21] 朱永胜, 杨俊林, 刘洲峰, 等. 基于博弈论的风-光-车容量配置研究[J]. 太阳能学报, 2020, 41(9): 95-103.
ZHU Y S, YANG J L, LIU Z F, et al.Research on capacity allocation of wind-PV-EV based on game theory[J]. Acta energiae solaris sinica, 2020, 41(9): 95-103.
[22] 陈健, 赵波, 王成山, 等. 不同自平衡能力并网型微电网优化配置分析[J]. 电力系统自动化, 2014, 38(21): 1-6, 18.
CHEN J, ZHAO B, WANG C S, et al.Optimal sizing analysis on grid-connected microgrid with different self-balancing capabilities[J]. Automation of electric power systems, 2014, 38(21): 1-6, 18.
[23] BOROWY B S, SALAMEH Z M.Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system[J]. IEEE transactions on energy conversion, 1996, 11(2): 367-375.
[24] 陈璐璐, 邱建林, 陈燕云, 等. 改进的遗传粒子群混合优化算法[J]. 计算机工程与设计, 2017, 38(2): 395-399.
CHEN L L, QIU J L, CHEN Y Y, et al.Improved hybrid optimization algorithms based on genetic algorithm and particle swarm optimization[J]. Computer engineering and design, 2017, 38(2): 395-399.
[25] 张俊峰, 徐继军, 徐建伟, 等. 基于改进粒子群算法的中深层地源热泵供暖系统运行优化[J]. 太阳能学报, 2024, 45(4): 311-317.
ZHANG J F, XU J J, XU J W, et al.Optimization of middle and deep ground source heat pump heating system based on improved particle swarm optimization algorithm[J]. Acta energiae solaris sinica, 2024, 45(4): 311-317.
[26] MAO M Q, JIN P, CHANG L C, et al.Economic analysis and optimal design on microgrids with SS-PVs for industries[J]. IEEE transactions on sustainable energy, 2014, 5(4): 1328-1336.

PDF(2042 KB)

Accesses

Citation

Detail

段落导航
相关文章

/