涡激振动驱动的串并列双柱群水动力特性及俘能研究

罗竹梅, 晁浩诚, 张晓旭, 李俊, 杨涛

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 198-206.

PDF(3133 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3133 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 198-206. DOI: 10.19912/j.0254-0096.tynxb.2024-0321

涡激振动驱动的串并列双柱群水动力特性及俘能研究

  • 罗竹梅1, 晁浩诚2, 张晓旭1, 李俊3, 杨涛4
作者信息 +

STUDY ON HYDROKINETIC ENERGY HARVESTING CHARACTERISTICS OF TANDEM-PARALLEL DOUBLE-COLUMN GROUPS DRIVEN BY VORTEX-INDUCED VIBRATION

  • Luo Zhumei1, Chao Haocheng2, Zhang Xiaoxu1, Li Jun3, Yang Tao4
Author information +
文章历史 +

摘要

采用双向流固耦合数值方法对串列及并列布置的两个刚性连接三圆柱柱群结构涡激振动(VIV)响应特性及俘能性能展开研究。分析串列群间间距比Z=8、12和16和并列群间距比Zy=4、6、8,约化速度U*=2~13范围内,串列及并列布置中柱群结构的水动力干扰特性及俘能大小、俘能效率的变化规律。研究结果表明:相较于单组串列双柱群,串并列刚性连接的柱群表现出更为复杂的水动力特性和响应结果,在柱群间隙流与尾流的相互作用以及柱群的相互干扰作用下,两柱群结构的振幅响应出现了从涡激振动到驰振的过渡区。串列柱群后尾涡形式主要以2P、2S和2T形式脱落,个别约化速度下出现碎涡及带状涡。随着群间间距比的增加,柱群间相互干扰作用减弱。间距比对串列刚性连接柱群的俘能影响不明显,柱群的俘能值和能量密度随着U*的增加而增加,当初始分支转换到上端分支时,上下游柱群的能量获取优势发生了变化。并列柱群间干扰通过尾涡相互作用后实现,因此柱群间相互作用微弱,Zy=8时,其涡激振动响应与单柱群响应特性几乎一致。

Abstract

The vortex-induced vibration (VIV) response characteristics and energy capture performance of two rigidly coupled three-cylinder groups arranged in tandem and parallel are investigated using a two-way flow-solid interaction numerical method. The hydrodynamic interference characteristics of the column-group structures with tandem and parallel arrangements, as well as the variation laws of energy capture magnitude and energy capture efficiency are analyzed in the range of the tandem vibrator spacing ratios Z= 8, 12 and 16, parallel group spacing ratios Zy= 4, 6 and 8, and U*=2-13. The results show that the tandem and parallel rigidly connected column groups exhibit more complex hydrodynamic characteristics and response results than that of the single set of tandem double column group, and the amplitude response of the double column group structure shows a transition zone from vortex-induced vibration to cyclonic vibration under the interaction of the gap flow and wake flow of the column group, as well as the effect of the reciprocal perturbation of the travelling column group. The wake vortices formed after the tandem column clusters are mainly shed in the form of 2P, 2S, and 2T, and fracture vortices and band vortices appear when the individual velocities decrease. As the inter-oscillator spacing ratio increases, the effect of mutual interference between column clusters decreases. The effect of spacing ratio on the captured energy of the tandem rigidly connected column clusters is insignificant, and the captured energy value and energy density of the column clusters increase with the increase of U*, and the energy capture advantage of the upstream and downstream column clusters changes when the initial branch is converted to the upper end branch. The interference between parallel column clusters is realized after the tail-vortex interaction, so the interaction between the column clusters is weak, and the vortex-induced vibration response is almost the same as the single-column cluster response characteristics at Zy=8.

关键词

海洋能 / 俘能结构 / 涡激振动 / 流固耦合 / 俘能特性 / 刚性连接

Key words

ocean energy / energy capture structure / vortex-induced vibration / fluid-structure interaction / energy capture characteristics / rigid connection

引用本文

导出引用
罗竹梅, 晁浩诚, 张晓旭, 李俊, 杨涛. 涡激振动驱动的串并列双柱群水动力特性及俘能研究[J]. 太阳能学报. 2025, 46(8): 198-206 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0321
Luo Zhumei, Chao Haocheng, Zhang Xiaoxu, Li Jun, Yang Tao. STUDY ON HYDROKINETIC ENERGY HARVESTING CHARACTERISTICS OF TANDEM-PARALLEL DOUBLE-COLUMN GROUPS DRIVEN BY VORTEX-INDUCED VIBRATION[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 198-206 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0321
中图分类号: TK79    TK730.2   

参考文献

[1] ZHANG S R, BAI X Y, ZHAO C W, et al.China’s carbon budget inventory from 1997 to 2017 and its challenges to achieving carbon neutral strategies[J]. Journal of cleaner production, 2022, 347: 130966.
[2] NESHAT M, MIRJALILI S, SERGIIENKO N Y, et al.Layout optimization of offshore wave energy converters using a novel multi-swarm cooperative algorithm with backtracking strategy: a case study from coasts of Australia[J]. Energy, 2022, 239: 122463.
[3] WANG J L, SU Z, LI H, et al.Imposing a wake effect to improve clean marine energy harvesting by flow-induced vibrations[J]. Ocean engineering, 2020, 208: 107455.
[4] KIM E S, SUN H, PARK H, et al.Development of an alternating lift converter utilizing flow-induced oscillations to harness horizontal hydrokinetic energy[J]. Renewable and sustainable energy reviews, 2021, 145: 111094.
[5] BERNITSAS M M, RAGHAVAN K, BEN-SIMON Y, et al.VIVACE (vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow[J]. Journal of offshore mechanics and Arctic engineering, 2008, 130(4): 041101.
[6] BERNITSAS M M, BEN-SIMON Y, RAGHAVAN K, et al.The VIVACE converter: model tests at high damping and Reynolds number around 105[C]//25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg, Germany, 2008: 639-653.
[7] 李俊, 罗竹梅, 郭涛等. 基于熵产理论的三维涡激振动低速水流能俘能分析[J]. 太阳能学报, 2023, 44(6): 45-52.
LI J, LUO Z M, GUO T, et al.Energy capture analysis of three-dimensional vortex-induced vibration of low-speed water flow based on entropy production theory[J]. Acta energiae solaris sinica, 2023, 44(6): 45-52.
[8] ZHANG B S, MAO Z Y, WANG L, et al.A novel V-shaped layout method for VIV hydrokinetic energy converters inspired by geese flying in a V-formation[J]. Energy, 2021, 230: 120811.
[9] ZHANG B S, MAO Z Y, SONG B W, et al.Numerical investigation on VIV energy harvesting of four cylinders in close staggered formation[J]. Ocean engineering, 2018, 165: 55-68.
[10] ZOU Q F, DING L, ZOU R, et al.Two-degree-of-freedom flow-induced vibration of two circular cylinders with constraint for different arrangements[J]. Ocean engineering, 2021, 225: 108806.
[11] 郭凯, 程雨轩, 唐博文, 等. 不等直径双圆柱流致振动能量转换特性研究[J]. 太阳能学报, 2023, 44(9): 1-8.
GUO K, CHENG Y X, TANG B W, et al.Numerical simulation of energy harvesting from flow induced vibration of different diameter cylinders[J]. Acta energiae solaris sinica, 2023, 44(9): 1-8.
[12] 刘旭菲, 陈威霖, 及春宁. 刚性耦合三圆柱流致振动特性和机制[J]. 振动与冲击, 2022, 41(12): 1-7.
LIU X F, CHEN W L, JI C N.Oscillation responses and mechanisms of three rigidly coupled circular cylinders[J]. Journal of vibration and shock, 2022, 41(12): 1-7.
[13] 罗竹梅, 聂聪, 郭涛. 涡激振动驱动的柱群结构集中俘获海流能研究[J]. 太阳能学报, 2021, 42(4): 89-94.
LUO Z M, NIE C, GUO T.Study on centralized harvesting ocean current energy with column-group structure by VIV[J]. Acta energiae solaris sinica, 2021, 42(4): 89-94.
[14] HAN P, PAN G, ZHANG B S, et al.Three-cylinder oscillator under flow: flow induced vibration and energy harvesting[J]. Ocean engineering, 2020, 211: 107619.
[15] HAN P, PAN G, TIAN W L, et al.Numerical simulation of flow-induced motion of three rigidly coupled cylinders in equilateral-triangle arrangement[J]. Physics of fluids, 2018, 30(12): 125107.
[16] BARRERO-GIL A, ALONSO G, SANZ-ANDRES A.Energy harvesting from transverse galloping[J]. Journal of sound and vibration, 2010, 329(14): 2873-2883.
[17] 于定勇, 崔肖娜, 唐鹏. 并列双圆柱绕流的水动力特性研究[J]. 中国海洋大学学报(自然科学版), 2015, 45(5): 107-113.
YU D Y, CUI X N, TANG P.Study on hydrodynamic characteristics of flow around parallel double cylinders[J]. Periodical of Ocean University of China, 2015, 45(5): 107-113.
[18] YANG T, LUO Z, YU F, et al.The effects of submergence depth on energy harvesting from the VIV of a four-cylinder oscillator with rigid connection[J]. Journal of renewable and sustainable energy, 2022, 14(6).

基金

国家自然科学基金(52469017); 云南省基础研究专项-重点项目(202401AS070058)

PDF(3133 KB)

Accesses

Citation

Detail

段落导航
相关文章

/