预溅射层对铜铟镓硒薄膜择优取向调控研究

戴万雷, 高泽冉, 孙亚利, 蒋昭毅, 王英龙, 于威

太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 696-703.

PDF(4517 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4517 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (1) : 696-703. DOI: 10.19912/j.0254-0096.tynxb.2024-0323

预溅射层对铜铟镓硒薄膜择优取向调控研究

  • 戴万雷1, 高泽冉1, 孙亚利1, 蒋昭毅2, 王英龙1, 于威1
作者信息 +

MECHANISM OF PRE-SPUTTER LAYER MODULATION OF Cu(In, Ga)Se2 THIN FILM ORIENTATION

  • Dai Wanlei1, Gao Zeran1, Sun Yali1, Jiang Zhaoyi2, Wang Yinglong1, Yu Wei1
Author information +
文章历史 +

摘要

采用高温直接溅射Cu-In-Ga-Se四元合金靶材工艺制备光吸收层,通过对预溅射层温度和厚度的调控,研究铜铟镓硒(CIGS)预溅射层对直接溅射法制备CIGS薄膜的(220)择优取向调控机理。结果表明,预溅射层沉积温度逐渐降低时,CIGS薄膜X射线衍射(XRD)I220/I112比值从0.43增大到1.05,晶粒尺寸逐渐变大且均匀。预溅射层厚度从0增加到120 nm时,I220/I112比值从0.48增大到1.12。在溅射温度为室温,预溅射层厚度为80 nm时,最终获得单点10.94%的器件效率。分析预溅射层表面AFM和XPS以及器件HRETM,发现低温预溅射层引入能够显著降低衬底表面电位,电压的振幅只有25 mV,较低的表面电位促进了高温沉积CIGS(220)择优取向,同时(220)择优取向促进了化学水浴工艺时Cd离子的掺杂,最终提升了CIGS器件效率。

Abstract

The (220) preferential-oriented CIGS film has a smooth grain surface and can promote the diffusion of Cd or Zn cations, giving CIGS devices better diode characteristics. This thesis uses a high-temperature direct sputtering CIGS quaternary alloy target process to prepare the CIGS absorption layer, by controlling the temperature and thickness of the CIGS pre-sputtering layer, the (220) preferential orientation control mechanism of the CIGS pre-sputtering layer on CIGS thin films prepared by direct sputtering was studied. The results show that when the deposition temperature of the pre-sputtering layer gradually decreases, the X-ray diffraction (XRD) I220/I112 ratio of the CIGS film increases from 0.43 to 1.05, and the grain size gradually becomes larger and more uniform. When the thickness of the pre-sputtering layer increases from 0 nm to 120 nm, the I220/I112 ratio increases from 0.48 to 1.12. When the sputtering temperature was room temperature and the pre-sputtering layer thickness was 80 nm, a single-point device efficiency of 10.94% was finally obtained. Through AFM and XPS testing of the sample surface, we found that the low-temperature pre-sputtering layer can significantly reduce the substrate surface potential, and the amplitude of the voltage is only 25 mV. The lower surface potential promotes the preferential orientation of CIGS (220) deposited at high temperatures while increasing alkali metal doping, ultimately improving CIGS devices'efficiency.

关键词

铜铟镓硒 / 四元靶材 / 磁控溅射 / 择优取向 / 表面电位

Key words

CIGS / quaternary / sputtering / preferred orientation / surface potential

引用本文

导出引用
戴万雷, 高泽冉, 孙亚利, 蒋昭毅, 王英龙, 于威. 预溅射层对铜铟镓硒薄膜择优取向调控研究[J]. 太阳能学报. 2025, 46(1): 696-703 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0323
Dai Wanlei, Gao Zeran, Sun Yali, Jiang Zhaoyi, Wang Yinglong, Yu Wei. MECHANISM OF PRE-SPUTTER LAYER MODULATION OF Cu(In, Ga)Se2 THIN FILM ORIENTATION[J]. Acta Energiae Solaris Sinica. 2025, 46(1): 696-703 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0323
中图分类号: TM914.4   

参考文献

[1] GREEN M A, DUNLOP E D, YOSHITA M, et al.Solar cell efficiency tables(version 62)[J]. Progress in photovoltaics: research and applications, 2023, 31(7): 651-663.
[2] SALHI B.The photovoltaic cell based on CIGS: principles and technologies[J]. Materials, 2022, 15(5): 1908.
[3] HSU C H, SU Y S, WEI S Y, et al.Na-induced efficiency boost for Se-deficient Cu(In, Ga)Se2 solar cells[J]. Progress in photovoltaics: research and applications, 2015, 23(11): 1621-1629.
[4] DAI W L, GAO Z R, LI J J, et al.Above 15% efficient directly sputtered CIGS solar cells enabled by a modified back-contact interface[J]. ACS applied materials & interfaces, 2021, 13(41): 49414-49422.
[5] 欧阳良琦, 庄大明, 张宁, 等. 磁控溅射四元靶材法制备17.5%效率CIGS电池研究[J]. 太阳能学报, 2016, 37(11): 2994-2998.
OUYANG L Q, ZHUANG D M, ZHANG N, et al.Study of Cu(In, Ga)Se2 solar cell with 17.5% efficiency achieved by sputtering a quaternary target[J]. Acta energiae solaris sinica, 2016, 37(11): 2994-2998.
[6] 刘沅东, 卓胜, 汤清琼, 等. 使用CIGS四元靶材制备高效率电池研究[J]. 太阳能学报, 2018, 39(2): 567-571.
LIU Y D, ZHUO S, TANG Q Q, et al.Study of high efficiency cigs solar cell with absorber produced by quternary target[J]. Acta energiae solaris sinica, 2018, 39(2): 567-571.
[7] FRANTZ J A, BEKELE R Y, NGUYEN V Q, et al.Cu(In, Ga)Se2 thin films and devices sputtered from a single target without additional selenization[J]. Thin solid films, 2011, 519(22): 7763-7765.
[8] ZHANG L, ZHUANG D M, ZHAO M, et al.The effects of annealing temperature on CIGS solar cells by sputtering from quaternary target with Se-free post annealing[J]. Applied surface science, 2017, 413: 175-180.
[9] HSU C H, HO W H, WEI S Y, et al.Over 14% efficiency of directly sputtered Cu(In,Ga)Se2 absorbers without postselenization by post-treatment of alkali metals[J]. Advanced energy materials, 2017, 7(13): 1602571.
[10] CHEN C H, LIN T Y, HSU C H, et al.Comprehensive characterization of Cu-rich Cu(In, Ga)Se2 absorbers prepared by one-step sputtering process[J]. Thin solid films, 2013, 535: 122-126.
[11] CHEN C H, SHIH W C, CHIEN C Y, et al.A promising sputtering route for one-step fabrication of chalcopyrite phase Cu(In, Ga)Se2 absorbers without extra Se supply[J]. Solar energy materials and solar cells, 2012, 103: 25-29.
[12] CABALLERO R, NICHTERWITZ M, STEIGERT A, et al.Impact of Na on MoSe2 formation at the CIGSe/Mo interface in thin-film solar cells on polyimide foil at low process temperatures[J]. Acta materialia, 2014, 63: 54-62.
[13] LIN T Y, CHEN C H, WANG L W, et al.Engineering Na-transport to achieve high efficiency in ultrathin Cu(In, Ga)Se2 solar cells with controlled preferred orientation[J]. Nano energy, 2017, 41: 697-705.
[14] KAMIKAWA-SHIMIZU Y, SHIMADA S, WATANABE M, et al.Effects of Mo back contact thickness on the properties of CIGS solar cells[J]. Physica status solidi (a), 2009, 206(5): 1063-1066.
[15] LI J J, DENG B F, ZHU H B, et al.Rear interface modification for efficient Cu(In,Ga)Se2 solar cells processed with metallic precursors and low-cost Se vapor[J]. Solar energy materials and solar cells, 2018, 186: 243-253.
[16] WANG Y Z, LV S S, LI Z C.Review on incorporation of alkali elements and their effects in Cu(In,Ga)Se2 solar cells[J]. Journal of materials science & technology, 2022, 96: 179-189.

基金

国家自然科学基金(62204074); 河北省自然科学基金(F2022201061); 河北大学高层次人才科研启动项目(521100221085)

PDF(4517 KB)

Accesses

Citation

Detail

段落导航
相关文章

/