在确保制动安全性的同时,为有效提升能量利用效率,以电动汽车为研究对象,提出一种电动汽车回馈-防抱死制动中储氢系统博弈协同控制方法。首先,构建电动汽车路面模型、车轮模型以及制动系统模型,为后续滑移率的分配提供输入;其次,需识别驾驶员的制动意图,获取驾驶员在不同行车状态的实际制动强度需求,求得电机回馈制动力矩;最后,基于滑移率与电机回馈制动力矩,构建电动汽车回馈-防抱死制动中储氢系统博弈协同控制策略,博弈调配储氢系统对回馈制动和液压制动的供气量,优化储氢系统的释放,实现储氢系统博弈协同控制。研究结果表明,所提方法具有较高的能量回收率和制动稳定性、鲁棒性,可为电动汽车的发展提供重要的技术支持。
Abstract
To ensure braking safety and effectively improve energy utilization efficiency, a game based collaborative control method for hydrogen storage system in electric vehicle regenerative anti-lock braking is proposed. Firstly, construct the road surface model, wheel model, and braking system model of the electric vehicle to provide input for the subsequent allocation of slip ratio. Secondly, it is necessary to identify the driver’s braking intention, obtain the actual braking intensity requirements of the driver in different driving states, and obtain the feedback braking torque of the motor; Finally, based on the slip ratio and the regenerative braking torque of the motor, a game based collaborative control strategy for the hydrogen storage system in the regenerative anti-lock braking system of electric vehicles is constructed. The game is used to allocate the gas supply of the hydrogen storage system for regenerative braking and hydraulic braking, optimize the hydrogen release process, and achieve game based collaborative control of the hydrogen storage system. The research results indicate that the proposed method has high energy recovery rate, braking stability, and robustness, which can provide important technical support for the development of electric vehicles.
关键词
电动汽车 /
储氢系统 /
博弈协同控制策略 /
回馈-防抱死制动 /
滑移率 /
电机回馈制动力矩
Key words
electric vehicles /
hydrogen storage system /
game-based collaborative control strategy /
regenerative-anti-lock braking /
slip ratio /
motor feedback braking torque
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孙波, 董浩, 王璐, 等. 计及电动汽车需求响应的风储混合系统日前联合优化调度模型[J]. 太阳能学报, 2021, 42(4): 107-114.
SUN B, DONG H, WANG L, et al.Joint optimal scheduling model for wind-storage hybrid system considering demand response of electric vehicle[J]. Acta energiae solaris sinica, 2021, 42(4): 107-114.
[2] 周雅夫, 史宏宇. 面向实车数据的电动汽车电池退役轨迹预测[J]. 太阳能学报, 2022, 43(5): 510-517.
ZHOU Y F, SHI H Y.Battery retirement trajectory prediction of electric vehicle based on real vehicle data[J]. Acta energiae solaris sinica, 2022, 43(5): 510-517.
[3] 陆文丽, 黄伟, 许恩永, 等. 基于响应面法的燃料电池商用车储氢系统多目标优化设计[J]. 现代制造工程, 2023(5): 58-64.
LU W L, HUANG W, XU E Y, et al.Multi-objective optimization design of hydrogen storage system for fuel cell commercial vehicle based on response surface methodology[J]. Modern manufacturing engineering, 2023(5): 58-64.
[4] 刘汉武, 雷雨龙, 付尧, 等. 基于多目标优化的增程式电动汽车自适应制动回馈控制策略[J]. 华南理工大学学报(自然科学版), 2021, 49(7): 42-50, 65.
LIU H W, LEI Y L, FU Y, et al.Adaptive regenerative braking control strategy of range-extended electric vehicle based on multi-objective optimization[J]. Journal of South China University of Technology(natural science edition), 2021, 49(7): 42-50, 65.
[5] ZHU Y Y, WU H, ZHEN C C.Regenerative braking control under sliding braking condition of electric vehicles with switched reluctance motor drive system[J]. Energy, 2021, 230: 120901.
[6] 常九健, 张煜帆. 基于EMB的纯电动汽车制动能量回收优化控制策略研究[J]. 汽车工程, 2022, 44(1): 64-72.
CHANG J J, ZHANG Y F.Research on optimization control strategy for braking energy recovery of a battery electric vehicle based on EMB system[J]. Automotive engineering, 2022, 44(1): 64-72.
[7] DONG H X, ZHUANG W C, YIN G D, et al.Energy-optimal braking control using a double-layer scheme for trajectory planning and tracking of connected electric vehicles[J]. Chinese journal of mechanical engineering, 2021, 34(1): 83.
[8] 张亮, 石沛林, 周龙辉, 等. 基于Dugoff轮胎模型对车辆质心侧偏角估计[J]. 广西大学学报(自然科学版), 2021, 46(6): 1523-1532.
ZHANG L, SHI P L, ZHOU L H, et al.Estimation of vehicle sideslip angle based on Dugoff tire model[J]. Journal of Guangxi University (natural science edition), 2021, 46(6): 1523-1532.
[9] 林棻, 王少博, 赵又群, 等. 基于改进Keras模型的路面附着系数估计[J]. 机械工程学报, 2021, 57(12): 74-86.
LIN F, WANG S B, ZHAO Y Q, et al.Road friction coefficient estimation based on improved Keras model[J]. Journal of mechanical engineering, 2021, 57(12): 74-86.
[10] 李科军, 陈淼林, 王江银, 等. 湿喷机液压制动系统制动阀性能研究[J]. 工程设计学报, 2022, 29(5): 579-586.
LI K J, CHEN M L, WANG J Y, et al.Study on brake valve performance of hydraulic brake system of wet spraying machine[J]. Chinese journal of engineering design, 2022, 29(5): 579-586.
[11] 魏正龙. 电感在线辨识下的永磁同步电动机制动能量回馈控制仿真[J]. 微特电机, 2022, 50(9): 53-57.
WEI Z L.Simulation of braking energy feedback control of permanent magnet synchronous motor based on inductance on-line identification[J]. Small & special electrical machines, 2022, 50(9): 53-57.
[12] 丁仰阳. 基于模糊推理和反模糊化的汽车制动器防抱死控制方法[J]. 机械制造与自动化, 2023, 52(4): 217-220.
DING Y Y.Anti-lock control method of automobile brake based on fuzzy reasoning and anti-fuzzy[J]. Machine building & automation, 2023, 52(4): 217-220.
[13] 韩琳, 周雄, 王冰, 等. 面向电动汽车的再生制动模糊控制器设计及应用[J]. 自动化与仪器仪表, 2023(6): 267-270.
HAN L, ZHOU X, WANG B, et al.Design and application of regenerative braking fuzzy controller for electric vehicles[J]. Automation & instrumentation, 2023(6): 267-270.
[14] 潘海鹏, 丁海波, 雷美珍, 等. 基于遗传算法的直驱式海浪发电系统最大功率跟踪控制[J]. 太阳能学报, 2021, 42(3): 221-227.
PAN H P, DING H B, LEI M Z, et al.Maximum power tracking control of direct drive ocean wave power generation system based on genetic algorithm[J]. Acta energiae solaris sinica, 2021, 42(3): 221-227.
[15] 曾小华, 陈虹旭, 宋大凤, 等. 基于电机最优回馈转矩曲线的制动控制策略[J]. 汽车工程, 2021, 43(2): 162-170.
ZENG X H, CHEN H X, SONG D F, et al.Braking control strategy based on optimal regenerative braking torque curve of motor[J]. Automotive engineering, 2021, 43(2): 162-170.
[16] 苑磊, 何仁. 泰勒级数前馈迟滞补偿电液复合ABS滑移率控制[J]. 江苏大学学报(自然科学版), 2023, 44(1): 29-36.
YUAN L, HE R.Slip rate control of electro-hydraulic compound ABS based on Taylor series feedforward hysteresis compensation[J]. Journal of Jiangsu University(natural science edition), 2023, 44(1): 29-36.
[17] 胡文超, 张向文, 李向杰, 等. 考虑路面附着条件影响的电动汽车制动力变比值优化分配算法研究[J]. 机械科学与技术, 2021, 40(2): 296-304.
HU W C, ZHANG X W, LI X J, et al.Optimized distribution algorithm of braking force variable ratio for electric vehicles considering road adhesion condition[J]. Mechanical science and technology for aerospace engineering, 2021, 40(2): 296-304.
[18] 周雪松, 李康, 马幼捷. DC-DC变换器滑模变结构控制研究[J]. 电力系统及其自动化学报, 2021, 33(3): 11-17.
ZHOU X S, LI K, MA Y J.Research on sliding-mode variable-structure control of DC-DC converter[J]. Proceedings of the CSU-EPSA, 2021, 33(3): 11-17.
基金
国家重点研究开发计划“原子磁强计的集成与测试技术”(:2017YFB0503102)