U型垂直轴风力机的概念及其可行性研究

程碧懿, 屈孝斌, 周智明, 魏炯辉, 姚英学

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 328-335.

PDF(2744 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2744 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 328-335. DOI: 10.19912/j.0254-0096.tynxb.2024-0331
第二十七届中国科协年会学术论文

U型垂直轴风力机的概念及其可行性研究

  • 程碧懿1,2, 屈孝斌3, 周智明4, 魏炯辉4, 姚英学2
作者信息 +

CONCEPT AND FEASIBILITY STUDY OF U-TYPE VERTICAL AXIS WIND TURBINE

  • Cheng Biyi1,2, Qu Xiaobin3, Zhou Zhiming4, Wei Jionghui4, Yao Yingxue2
Author information +
文章历史 +

摘要

为有效解决垂直轴风力机易断轴、难做大等结构问题,提出一种U型垂直轴风力机的构型方案。介绍该风力机的基本组成和工作过程,建立并验证垂直轴风力机的有限元仿真模型。建立U型垂直轴风力机的抗倾覆力学模型,完成U型支撑构件、铰链机构、滚轮部件、车体单元的载荷分析。基于组合变形理论和交变应力-疲劳寿命分析理论,建立主支撑构件静强度疲劳寿命的数学模型。应用静力学仿真模型,分析加强支撑构件对风轮变形的影响作用。研究结果表明,U型垂直轴风力机采用翼型截面的斜置主支撑梁代替垂直主轴,下压式滚轮部件和承载式车体系统能有效地防止风轮发生倾覆,车体单元的运行速度为97.2 km/h(即27 m/s)以内,U型与H型风轮在主支撑构件危险截面的交变应力幅值比小于0.9,U型风轮的使用寿命至少是H型的2.34倍,绳索减少约60 %的风轮变形,有效降低了风轮的质量。

Abstract

In order to effectively solve the structural limits of Vertical Axis Wind Turbine (VAWT), such as easy to break the shaft and difficult to scale up, a configuration design of U-type VAWT is proposed in this study. The basic composition and operational principle of the novel wind turbine are introduced. The Finite Element Method (FEM) models of VAWT are established and verified. The anti-overturning mechanical model of U-type VAWT is established. The load balance analyses of U-type support component, hinge mechanism, roller unit and vehicle assembly are completed. Based on the combined deformation theory and the alternating stress-fatigue life analysis theory, the mathematical model of the static-strength fatigue life of the main support component is established. The static simulation model is used to analyze the influence of supplementary supporting components on the deformation of U-type VAWT. The research results show that U-type VAWT adopts the inclined main support component with the airfoil section instead of the vertical main shaft, and the pressure-type roller unit and the load-beaning vehicle assembly can effectively prevent the overturning of U-type VAWT. The running speed of the vehicle assembly is less than 97.2 km/h which is 27 m/s. The alternating stress amplitude ratio of U-type and H-type VAWT in the dangerous section of the main support component is less than 0.9, which means the service life of U-type VAWT is 2.34 times of that of H-type at least. The rope reduces the deformation of U-type VAWT by about 60%, effectively reducing the mass of U-type VAWT.

关键词

垂直轴风力机 / 概念设计 / 静力学分析 / 结构载荷 / 疲劳寿命

Key words

vertical axis wind turbine / conceptual design / static analysis / structural loads / fatigue life

引用本文

导出引用
程碧懿, 屈孝斌, 周智明, 魏炯辉, 姚英学. U型垂直轴风力机的概念及其可行性研究[J]. 太阳能学报. 2025, 46(7): 328-335 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0331
Cheng Biyi, Qu Xiaobin, Zhou Zhiming, Wei Jionghui, Yao Yingxue. CONCEPT AND FEASIBILITY STUDY OF U-TYPE VERTICAL AXIS WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 328-335 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0331
中图分类号: TK83   

参考文献

[1] 廖唯良, 张明明, 杨建军, 等. 超大型风力机叶片颤振抑制研究进展[J/OL]. 太阳能学报, 1-10[2024-07-02].
LIAO W L, ZHANG M M, YANG J J, et al.Research progress of blade flutter suppression for ultra-large wind turbines [J/OL]. Acta energiae solaris sinica,1-10[2024-07-02].
[2] 李立安. 风电机组叶片疲劳损伤状态预警与健康监测[J]. 太阳能学报, 2024, 45(2): 499.
LI L A.Fatigue damage state warning and health monitoring of wind turbine blades[J]. Acta energiae solaris sinica, 2024, 45(2): 499.
[3] 刘永飞, 陈微圣, 孙晓晶. 三种流动控制方法对H型垂直轴风力机性能影响的对比分析[J]. 太阳能学报, 2024, 45(3): 105-115.
LIU Y F, CHEN W S, SUN X J.Comparative analysis of effectiveness of three different flow control strategies for performance enhancement of H-type vertical axis wind turbine[J]. Acta energiae solaris sinica, 2024, 45(3): 105-115.
[4] 凌子焱, 赵振宙, 刘一格, 等. 垂直轴风力机三维尾流模型的研究[J]. 太阳能学报, 2023, 44(11): 196-202.
LING Z Y, ZHAO Z Z, LIU Y G, et al.Study of three-dimensional wake model for vertical-axis wind turbine[J]. Acta energiae solaris sinica, 2023, 44(11): 196-202.
[5] 李根, 刘青松, 李春, 等. 基于正交试验凹槽-襟翼垂直轴风力机数值研究[J]. 太阳能学报, 2023, 44(5): 294-301.
LI G, LIU Q S, LI C, et al.Numerical study of vertical axis wind turbine with dimple-flaps based on orthogonal test[J]. Acta energiae solaris sinica, 2023, 44(5): 294-301.
[6] 欧华浩, 叶舟, 刘青松, 等. 伸缩式斜柱对垂直轴风力机气动性能影响研究[J]. 太阳能学报, 2023, 44(5): 376-383.
OU H H, YE Z, LIU Q S, et al.Study on effect of telescopic inclined columns on aerodynamic performance of vertical axis wind turbine[J]. Acta energiae solaris sinica, 2023, 44(5): 376-383.
[7] DE TAVERNIER D, FERREIRA C, GOUDE A.Vertical-axis wind turbine aerodynamics[M]//Handbook of Wind Energy Aerodynamics. Cham: Springer International Publishing, 2022: 1317-1361.
[8] MOHAN KUMAR P, SIVALINGAM K, LIM T C, et al.Review on the evolution of darrieus vertical axis wind turbine: large wind turbines[J]. Clean technologies, 2019, 1(1): 205-223.
[9] 徐文浩, 邱展, 喻伯平, 等. 双层反转垂直轴风力机的流场特性数值模拟[J]. 浙江大学学报(工学版), 2019, 53(11): 2223-2230.
XU W H, QIU Z, YU B P, et al.Numerical simulation on flow field characteristics of a double-layer counter-rotating vertical axis wind turbine[J]. Journal of Zhejiang University (engineering science), 2019, 53(11): 2223-2230.
[10] WORLD WILD WIND. Next generation floating offshore wind[EB/OL]. (2022-12-06) [2023-02-18]. https://worldwidewind.no/.
[11] FEATURES ARUP. Wind Power Ltd.[EB/OL]. (2013-02-20) [2023-02-18]. http://www. windpower.ltd.uk/.
[12] ARPINO F, SCUNGIO M, CORTELLESSA G.Numerical performance assessment of an innovative Darrieus-style vertical axis wind turbine with auxiliary straight blades[J]. Energy conversion and management, 2018, 171: 769-777.
[13] CHENG B Y, DU J J, YAO Y X.Machine learning methods to assist structure design and optimization of Dual Darrieus Wind Turbines[J]. Energy, 2022, 244: 122643.
[14] CHENG B Y, DU J J, YAO Y X.Power prediction formula for blade design and optimization of dual Darrieus Wind turbines based on Taguchi method and genetic expression programming model[J]. Renewable energy, 2022, 192: 583-605.
[15] CHENG B Y, YAO Y X.Machine learning based surrogate model to analyze wind tunnel experiment data of Darrieus wind turbines[J]. Energy, 2023, 278: 127940.
[16] CHENG B Y, YAO Y X.Design and optimization of a novel U-type vertical axis wind turbine with response surface and machine learning methodology[J]. Energy conversion and management, 2022, 273: 116409.
[17] DABACHI M A, ROUWAY M, RAHMOUNI A, et al.Numerical investigation of the structural behavior of an innovative offshore floating darrieus-type wind turbines with three-stage rotors[J]. Journal of composites science, 2022, 6(6): 167.
[18] HAMEED M S, AFAQ S K.Design and analysis of a straight bladed vertical axis wind turbine blade using analytical and numerical techniques[J]. Ocean engineering, 2013, 57: 248-255.
[19] GB/T 29494—2013, 小型垂直轴风力发电机组[S].
GB/T 29494—2013, Small vertical axis wind turbines[S].
[20] GB/T4661—2015, 滚动轴承圆柱滚子[S].
GB/T4661—2015, Rolling bearings—cylindrical rollers[S].
[21] GB/T4662—2012, 滚动轴承额定静载荷[S].
GB/T4662—2012, Rolling bearings—Static load ratings[S].

基金

国家自然科学基金-广东省联合基金重点项目(U22A20194); 广东省自然科学基金-面上项目(2025A1515012307); 广州市基础与应用基础研究专题(2025A04J1177); 深圳市高等院校稳定支持计划项目(GXWD20231130003553001)

PDF(2744 KB)

Accesses

Citation

Detail

段落导航
相关文章

/