光储充一体机中不对称CLLC交错并联宽增益控制策略研究

潘国兵, 章浩飞, 夏嵩迪, 庞清华, 周英浩

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 177-185.

PDF(5252 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(5252 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 177-185. DOI: 10.19912/j.0254-0096.tynxb.2024-0359
第二十七届中国科协年会学术论文

光储充一体机中不对称CLLC交错并联宽增益控制策略研究

  • 潘国兵, 章浩飞, 夏嵩迪, 庞清华, 周英浩
作者信息 +

RESEARCH ON WIDE GAIN CONTROL STRATEGY OF ASYMMETRIC CLLC INTERLEAVED PARALLEL IN INTEGRATED PHOTOVOLTAIC STORAGE CHARGER

  • Pan Guobing, Zhang Haofei, Xia Songdi, Pang Qinghua, Zhou Yinghao
Author information +
文章历史 +

摘要

光储充一体机的核心部分——双向DC/DC很难同时做到隔离和宽电压范围输出。提出一种两相并联的不对称CLLC电路拓扑及相关控制策略,采用交错并联和拓扑复用的控制方式,使变换器产生半桥、全桥、全桥交错并联3种模式,提供宽电压增益范围,使变换器工作于过谐振频率点附近,3种工作模式均实现了原边侧开关管的零电压开通。针对全桥交错并联模式下因实际谐振参数差异导致的输出功率不均衡问题,提出在增益较小相进行补偿的方法——增加副边开关管的移相控制方法。通过理论分析,对相应的增益公式进行推导,验证了该方法能够调整输出增益,进而均衡功率。最终,在构建的3.3 kW实验平台上进行验证,该变换器可提供满足储能电池多段式充电所需的电压和功率范围,在3种模式下均保持软开关,并实现全桥交错并联模式下的功率均衡。

Abstract

The traditional photovoltaic storage charger widely used in the photovoltaic storage DC microgrid, the core part-bidirectional DC/DC is difficult to do at the same time to isolate and storage batteries need a wide range of voltage output. In this paper, a two-phase parallel asymmetric CLLC circuit topology and the associated control strategy are proposed, which adopts the control method of interleaved parallel and topology multiplexing to generate three modes of half-bridge, full-bridge, and full-bridge interleaved parallel to provide a wide voltage gain range, so that the converter operates near the above-resonant frequency point, and the three modes of operation achieve the zero-voltage turn-on of the primary-side switching tube. Aiming at the output power imbalance problem caused by the difference of actual resonance parameters in the full-bridge interleaved parallel mode, a method of compensating for the smaller gain phases, the phase-shift control method of increasing the secondary-side switching tubes is proposed. Through theoretical analysis and derivation of the corresponding gain formula, it is verified that the method can adjust the output gain and thus equalize the power. Finally, it is verified on the constructed 3.3 kW experimental platform that the converter can provide the voltage and power ranges required to satisfy the multi-stage charging of energy storage batteries, maintains the soft-switching in all the three modes, and achieves the power equalization in the full-bridge interleaved parallel mode.

关键词

双向DC/DC / 不对称CLLC / 交错并联 / 功率均衡

Key words

bidirectional DC/DC / asymmetric CLLC / interleaved parallel / power equalization

引用本文

导出引用
潘国兵, 章浩飞, 夏嵩迪, 庞清华, 周英浩. 光储充一体机中不对称CLLC交错并联宽增益控制策略研究[J]. 太阳能学报. 2025, 46(7): 177-185 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0359
Pan Guobing, Zhang Haofei, Xia Songdi, Pang Qinghua, Zhou Yinghao. RESEARCH ON WIDE GAIN CONTROL STRATEGY OF ASYMMETRIC CLLC INTERLEAVED PARALLEL IN INTEGRATED PHOTOVOLTAIC STORAGE CHARGER[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 177-185 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0359
中图分类号: TK519   

参考文献

[1] 丁明, 胡迪, 毕锐, 等. 含高渗透率可再生能源的配电网可靠性分析[J]. 太阳能学报, 2020, 41(2): 194-202.
DING M, HU D, BI R, et al.Reliability analysis of distribution system containing high penetration renewable energy[J]. Acta energiae solaris sinica, 2020, 41(2): 194-202.
[2] 田艳军, 彭飞, 朱晓荣, 等. 直流微网储能单元的灵活类虚拟同步发电机控制[J]. 高电压技术, 2020, 46(7): 2316-2328.
TIAN Y J, PENG F, ZHU X R, et al.Flexible analogous virtual synchronous generator control for energy storage units in DC microgrid[J]. High voltage engineering, 2020, 46(7): 2316-2328.
[3] 李建林, 马会萌, 惠东. 储能技术融合分布式可再生能源的现状及发展趋势[J]. 电工技术学报, 2016, 31(14): 1-10, 20.
LI J L, MA H M, HUI D.Present development condition and trends of energy storage technology in the integration of distributed renewable energy[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 1-10, 20.
[4] 王成山, 李霞林, 郭力. 基于功率平衡及时滞补偿相结合的双级式变流器协调控制[J]. 中国电机工程学报, 2012, 32(25): 109-117.
WANG C S, LI X L, GUO L.Coordinated control of two-stage power converters based on power balancing and time-delay compensation[J]. Proceedings of the CSEE, 2012, 32(25): 109-117.
[5] 龚春阳, 林嘉伟, 黄冬梅, 等. 储能系统双向Buck-Boost变换器控制策略研究[J]. 太阳能学报, 2023, 44(2): 229-238.
GONG C Y, LIN J W, HUANG D M, et al.Research on control strategy of bidirectional Buck-Boost converter in energy storage system[J]. Acta energiae solaris sinica, 2023, 44(2): 229-238.
[6] 张辉, 杜明桥, 孙凯, 等. 双母线直流微电网的级联稳定性分析[J]. 电力自动化设备, 2021, 41(5): 34-42.
ZHANG H, DU M Q, SUN K, et al.Cascade stability analysis of double-bus DC microgrid[J]. Electric power automation equipment, 2021, 41(5): 34-42.
[7] 李俊杰, 吴在军, 杨士慧, 等. 交直流混合微电网中电力电子变压器功率控制与模式切换方法[J]. 电力自动化设备, 2020, 40(8): 82-87, 110, 88.
LI J J, WU Z J, YANG S H, et al. Power control and mode switching method of power electronic transformer in AC/DC hybrid microgrid[J]. Electric power automation equipment, 2020, 40(8): 82-87, 110, 88.
[8] 刘林, 熊兰, 高迎飞. 应用于储能变流器的LLC/CLLC谐振变换器综述[J]. 电源学报, 2021, 19(6): 50-63.
LIU L, XIONG L, GAO Y F.Review of LLC/CLLC resonant converters applied to power conversion system[J]. Journal of power supply, 2021, 19(6): 50-63.
[9] 温春雪, 李宇航, 胡茗茗, 等. 双向LLC谐振型直流变换器设计与控制[J]. 太阳能学报, 2020, 41(6): 218-225.
WEN C X, LI Y H, HU M M, et al.Design and control of bidirectional LLC resonant DC converter[J]. Acta energiae solaris sinica, 2020, 41(6): 218-225.
[10] CHEN W, RONG P, LU Z Y.Snubberless bidirectional DC-DC converter with new CLLC resonant tank featuring minimized switching loss[J]. IEEE transactions on industrial electronics, 2010, 57(9): 3075-3086.
[11] 曲璐, 王昕, 许家誉, 等. 用于车载充电的双向CLLC变换器设计[J]. 哈尔滨工业大学学报, 2021, 53(9): 144-155.
QU L, WANG X, XU J Y, et al.Design method of bidirectional CLLC resonant converter for on-board charger applications[J]. Journal of Harbin Institute of Technology, 2021, 53(9): 144-155.
[12] 龙璟. 一种应用于直流微网的双向DC/DC变换器研究[D]. 杭州: 浙江大学, 2023.
LONG J.Research on a bidirectional DC/DC converter for DC microgrid[D]. Hangzhou: Zhejiang University, 2023.
[13] SHI J J, ZHOU L B, HE X N.Common-duty-ratio control of input-parallel output-parallel (IPOP) connected DC-DC converter modules with automatic sharing of currents[J]. IEEE transactions on power electronics, 2012, 27(7): 3277-3291.
[14] 薛利坤, 王萍, 王议锋, 等. 基于开关电容和耦合电感的交错并联型高电压增益双向DC-DC变换器[J]. 电工技术学报, 2016, 31(24): 181-187, 194.
XUE L K, WANG P, WANG Y F, et al.Interleaved high gain bidirectional DC-DC converter with switched capacitor and coupled inductor[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 181-187, 194.
[15] ARSHADI S A, ORDONEZ M, EBERLE W, et al.Unbalanced three-phase LLC resonant converters: analysis and trigonometric current balancing[J]. IEEE transactions on power electronics, 2019, 34(3): 2025-2038.
[16] 谢冰, 纪延超, 王建赜, 等. 三相交错并联DC/DC变换器充放电功率分配控制策略[J]. 电机与控制学报, 2018, 22(11): 1-10.
XIE B, JI Y C, WANG J Z, et al.Charging and discharging power distribution control scheme for three-phase interleaved bidirectional DC/DC converter[J]. Electric machines and control, 2018, 22(11): 1-10.
[17] 易海艳. 双向DC/DC变换器并联均流技术的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
YI H Y.Research on parallel current sharing technology of bidirectional DC/DC converter[D]. Harbin: Harbin Institute of Technology, 2018.
[18] AHMAD U, CHA H, RO J S.Integrated current balancing cells based IPOP bidirectional CLLC resonant converter modules for high-power applications[J]. IET power electronics, 2022, 15(15): 1687-1698.
[19] 石林, 刘邦银, 段善旭. 一种基于模块间移相的三相半桥LLC变换器均流控制策略[J]. 电工技术学报, 2019, 34(21): 4551-4558.
SHI L, LIU B Y, DUAN S X.A current balance method based on phase-shift control between modules in three-phase half-bridge LLC converter[J]. Transactions of China Electrotechnical Society, 2019, 34(21): 4551-4558.
[20] 赵清林, 刘会峰, 袁精, 等. 基于移相补偿的全桥LLC谐振变换器交错并联技术[J]. 电工技术学报, 2018, 33(12): 2777-2787.
ZHAO Q L, LIU H F, YUAN J, et al.An interleaved full-bridge LLC resonant converter with phase shift compensation[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2777-2787.
[21] 孙加祥, 吴红飞, 汤欣喜, 等. 基于整流侧辅助调控的交错并联LLC谐振变换器[J]. 电工技术学报, 2021, 36(10): 2072-2080.
SUN J X, WU H F, TANG X X, et al.Interleaved LLC resonant converter with auxiliary regulation of rectifier[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2072-2080.
[22] ZHU L Y, BAI H, BROWN A, et al.Design a 400 V-12 V 6 kW bidirectional auxiliary power module for electric or autonomous vehicles with fast precharge dynamics and zero DC-bias current[J]. IEEE transactions on power electronics, 2021, 36(5): 5323-5335.

基金

浙江省重点研发计划(2021C01112)

PDF(5252 KB)

Accesses

Citation

Detail

段落导航
相关文章

/