太阳能供暖静置期埋地储热水体散热特性分析

许莉, 李勇, 刘艳峰, 梁宇翔, 王登甲

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 733-740.

PDF(3570 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3570 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 733-740. DOI: 10.19912/j.0254-0096.tynxb.2024-0363
第二十七届中国科协年会学术论文

太阳能供暖静置期埋地储热水体散热特性分析

  • 许莉1, 李勇1,2, 刘艳峰1,2, 梁宇翔1, 王登甲1,2
作者信息 +

ANALYSIS OF HEAT DISSIPATION CHARACTERISTICS OF BURIED THERMAL STORAGE WATER PIT DURING STANDBY PERIOD FOR SOLAR HEATING SYSTEMS

  • Xu Li1, Li Yong1,2, Liu Yanfeng1,2, Liang Yuxiang1, Wang Dengjia1,2
Author information +
文章历史 +

摘要

建立倒金字塔形埋地储热水体的三维瞬态模型,并通过西藏浪卡子县埋地储热水体的实测结果进行验证,研究几何形状对太阳能供暖静置期埋地储热水体热性能的影响。结果表明,水体高10 m时,随着坡角的增加,水体顶部和侧壁的自然对流换热系数减小,底部的自然对流换系数增加;当水体高度小于等于10 m时,储热水体的总热损失随着坡角的增加而降低。当坡角为30°、60°、90°、高度分别为12、10、10 m时水体储热效率最高,其中水体高度为10 m、坡角为60°时,储热效果最优。

Abstract

A three-dimensional transient model of pit thermal energy storage (PTES) with an inverted pyramid shape is established and verified using measured results from a PTES system in Langkazi County, Tibet. The influence of geometric shape on thermal performance of PTES during the standby period is studied. The results indicate that with a PTES height of 10 m, the natural convection heat transfer intensity at the top and side of PTES decreases with an increase in the slope angle, while the natural convection heat transfer intensity at the bottom increases. For the height of PTES less than or equal to 10 m, the total heat loss of PTES decreases with the increase in the slope angle. The optimal heat storage efficiencies of PTES is achieved when the slope angles are 30°, 60°, and 90°, and the heights are 12 m, 10 m, and 10 m, respectively. After a standby period for 60 hours, with a PTES height of 10 m and a slope angle of 60°, the highest heat storage efficiency is achieved.

关键词

太阳能 / 储热 / 效率 / 水体高度 / 坡角

Key words

solar energy / heat storage / efficiency / water body heigh / slope angle

引用本文

导出引用
许莉, 李勇, 刘艳峰, 梁宇翔, 王登甲. 太阳能供暖静置期埋地储热水体散热特性分析[J]. 太阳能学报. 2025, 46(7): 733-740 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0363
Xu Li, Li Yong, Liu Yanfeng, Liang Yuxiang, Wang Dengjia. ANALYSIS OF HEAT DISSIPATION CHARACTERISTICS OF BURIED THERMAL STORAGE WATER PIT DURING STANDBY PERIOD FOR SOLAR HEATING SYSTEMS[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 733-740 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0363
中图分类号: TU832   

参考文献

[1] 刘艳峰, 曹彦宾, 王登甲,等. 基于网格寻优算法的太阳能供暖系统匹配优化[J]. 太阳能学报, 2021, 42(4): 286-292.
LIU Y F, CAO Y B, WANG D J, et al.Matching optimization of solar heating system based on grid optimization algorithm[J]. Acta energiae solaris sinica, 2021, 42(4): 286-292.
[2] 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.
YAO Y B, ZHENG S Z, YANG Y, et al.Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta energiae solaris sinica, 2022, 43(10): 524-535.
[3] 刘艳峰, 万静, 陈耀文, 等. 分布式太阳能集中供暖系统用户与集中蓄热装置容量匹配优化设计[J]. 太阳能学报, 2022, 43(9): 184-192.
LIU Y F, WAN J, CHEN Y W, et al.Optimal design of capacity matching between users and central heat storage device in distributed solar central heating system[J]. Acta energiae solaris sinica, 2022, 43(9): 184-192.
[4] MAHON H, O’CONNOR D, FRIEDRICH D, et al. A review of thermal energy storage technologies for seasonal loops[J]. Energy, 2022, 239: 122207.
[5] CHANG C, LENG G H, LI C, et al.Investigation on transient cooling process in a water heat storage tank with inclined sidewalls[J]. Energy procedia, 2017, 142: 142-147.
[6] XIANG Y T, XIE Z C, FURBO S, et al.A comprehensive review on pit thermal energy storage: technical elements,numerical approaches and recent applications[J]. Journal of energy storage, 2022, 55: 105716.
[7] 刘艳峰, 高文贞, 陈耀文, 等. 分布式太阳能集中供暖用户热盈亏特性研究[J].太阳能学报, 2022, 43(7): 233-241.
LIU Y F, GAO W Z, CHEN Y W, et al.Research on prosumer’s thermal profit or loss characteristics of distributed district solar heating system[J]. Acta energiae solaris sinica, 2022, 43(7): 233-241.
[8] 贺明飞, 王志峰, 原郭丰, 等. 水体型太阳能跨季节储热技术简介[J]. 建筑节能(中英文), 2021, 49(10) : 66-70.
HE M F, WANG Z F, YUAN G F, et al.A technical introduction of water pit for long-term seasonal solar thermal energy storage[J]. Building energy efficiency,2021, 49(10): 66-70.
[9] LI Q, LIN W, HUANG X Q, et al.Thermocline dynamics in a thermally stratified water tank under different operation modes[J]. Applied thermal engineering, 2022, 212: 118560.
[10] FAN J H, FURBO S.Thermal stratification in a hot water tank established by heat loss from the tank[J]. Solar energy, 2012, 86(11): 3460-3469.
[11] 韩涛, 马彦花, 方嘉宾, 等. 管壳式太阳能相变储热器传热特性的数值研究[J].太阳能学报, 2023, 44(3): 525-532.
HAN T, MA Y H, FANG J B, et al.Numerical simulation study of heat transfer characteristics on solar tube-and-shell phase change heat storage unit[J]. Acta energiae solaris sinica, 2023, 44(3): 525-532.
[12] RODRÍGUEZ I, CASTRO J, PÉREZ-SEGARRA C D, et al. Unsteady numerical simulation of the cooling process of vertical storage tanks under laminar natural convection[J]. International journal of thermal sciences, 2009, 48(4): 708-721.
[13] MONCHO-ESTEVE I J, GASQUE M, GONZÁLEZ-ALTOZANO P, et al. Simple inlet devices and their influence on thermal stratification in a hot water storage tank[J]. Energy and buildings, 2017, 150: 625-638.
[14] YANG Z, CHEN H S, WANG L, et al.Comparative study of the influences of different water tank shapes on thermal energy storage capacity and thermal stratification[J]. Renewable energy, 2016, 85: 31-44.
[15] BAI Y K, WANG Z F, FAN J H, et al.Numerical and experimental study of an underground water pit for seasonal heat storage[J]. Renewable energy, 2020, 150: 487-508.
[16] XU G Z, HU L, LUO Y Q, et al.Numerical modeling and parametric analysis of thermal performance for the large-scale seasonal thermal energy storage[J]. Energy and buildings, 2022, 275: 112459.
[17] GAO M, SHAO S Y, XIANG Y T, et al.Semi-analytical model of a large-scale water pit heat storage for the long-term thermal applications[J]. Energy and buildings, 2024, 307: 113975.
[18] CHANG C, WU Z Y, NAVARRO H, et al.Comparative study of the transient natural convection in an underground water pit thermal storage[J]. Applied energy, 2017, 208: 1162-1173.
[19] XIANG Y T, GAO M, FURBO S, et al.Assessment of inlet mixing during charge and discharge of a large-scale water pit heat storage[J]. Renewable energy, 2023, 217: 119170.
[20] 杨洪波, 于晓丹, 付海美, 等. 西藏那曲地区土壤温度变化特征及其与环境关系研究[J]. 全球变化数据学报 (中英文), 2020, 4(2): 144-154.
YANG H B, YU X D, FU H M, et al.Variation of soil temperature and its relationship with the environment in Nagqu,Tibet[J]. Journal of global change data & discovery, 2020, 4(2): 144-154.
[21] 李卫东, 朱红, 王丽苑, 等. 西藏气温变化趋势分析研究[J]. 甘肃冶金, 2016, 38(6): 127-132.
LI W D, ZHU H, WANG L Y, et al.Trend analysis of air temperature change in Tibet[J].Gansu metallurgy, 2016, 38(6): 127-132.
[22] HE M F, WANG Z F, ZHANG J J, et al.Study on heat transfer process of insulated floating cover of water pit for solar seasonal thermal storage[J]. Energy reports, 2022, 8: 1396-1404.
[23] SIFNAIOS I, JENSEN A R, FURBO S, et al.Heat losses in water pit thermal energy storage systems in the presence of groundwater[J]. Applied thermal engineering, 2023, 235: 121382.
[24] LARWA B.Heat transfer model to predict temperature distribution in the ground[J]. Energies, 2019, 12(1): 25.
[25] XIE Z C, XIANG Y T, WANG D J, et al.Numerical investigations of long-term thermal performance of a large water pit heat storage[J]. Solar energy, 2021, 224: 808-822.
[26] CHANG C, NIE B J, LENG G H, et al.Influences of the key characteristic parameters on the thermal performance of a water pit seasonal thermal storage[J]. Energy procedia, 2017, 142: 495-500.
[27] 白亚开. 太阳能跨季节储热水体储热性能研究[D].北京:中国科学院大学, 2020.
BAI Y K.A study on the thermal performance of water pit for solar seasonal heat storage[D].Beijing:University of Chinese Academy of Sciences, 2020.

基金

国家自然科学基金联合基金(U20A20311); 国家自然科学基金面上项目(52378108); 西藏自治区拉萨市科技计划(LSKJ202308)

PDF(3570 KB)

Accesses

Citation

Detail

段落导航
相关文章

/