为提高有机朗肯循环(ORC)系统的效率及减少对环境的污染,该文对太阳能驱动的传统CO2跨临界朗肯循环进行改进,采用双级压缩中间再热的形式,减少压缩机耗功,提高系统效率。对系统建立热力学、经济和环境模型。研究900 kW级CO2朗肯循环太阳能发电系统的透平入口温度、导热油流量和分流比对系统热力-经济-环境性能的影响。并采用非支配排序遗传算法(NSGA-Ⅱ)进行多目标优化。结果表明,透平入口温度对热效率的影响最大,而分流比和导热油流量分别对平准化度电成本和CO2减排量的影响较大。通过多目标优化得到Pareto最优解,即:在透平入口温度为206 ℃、导热油流量为14.75 kg/s、分流比为0.1条件下,系统热效率为21.76%,平准化度电成本为0.12美元/kWh,CO2减排量为9458 t。研究结果可为中国中低温光热发电技术的完善和实际应用提供一定的理论指导。
Abstract
In order to improve the efficiency of Organic Rankine Cycle (ORC) system and reduce the pollution to the environment, this paper improves the conventional CO2 transcritical Rankine cycle driven by solar energy. A two-stage compression with intermediate reheating is used to reduce the compressor power consumption and improve the system efficiency. Thermodynamic, economic and environmental models were established. The effects of the turbine inlet temperature, flow rate of heat transfer oil and shunt ratio on the thermodynamic-economic-environmental performance of a 900 kW class CO2 Rankine cycle solar power system were investigated. Multi-objective optimization was carried out using the non-dominated sequential genetic algorithm (NSGA-Ⅱ). The results show that the turbine inlet temperature has the greatest influence on thermal efficiency, and the shunt ratio and heat transfer oil flow rate have a greater influence on LCOE and CO2 emission reduction, respectively. The Pareto optimal solutions are obtained by multi-objective optimization. The optimized results indicate that the thermal efficiency of the system is 21.76%, the levelized cost of electricity(LCOE) is 0.12 $/kWh, and the reduction of CO2 emission is 9, 458 tons at turbine inlet temperature of 206 ℃, flow rate of heat transfer oil of 14.75 kg/s, and shunt ratio of 0.1. The study results can provide some theoretical guidance for the improvement and practical application of medium-and low-temperature photothermal power generation technology in China.
关键词
太阳能 /
朗肯循环 /
多目标优化 /
双级压缩中间再热 /
热力学-经济-环境分析
Key words
solar energy /
Rankine cycle /
multiobjective optimization /
two-stage compression with intermediate reheating /
thermodynamic-economic-environmental analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 马新灵, 潘佳浩, 邱宇恒, 等. 不同工况下非共沸混合工质有机朗肯循环系统性能研究[J]. 热能动力工程, 2023, 38(2): 10-17.
MA X L,PAN J H,QIU Y H,et al.Performance study on zeotropic mixture organie Rankine cycle system under different working conditions[J]. Thermal power engineering, 2023, 38(2): 10-17.
[2] 毛静雯, 徐斌, 胡宜康, 等. 太阳能有机朗肯循环研究与应用综述[J]. 低温与超导, 2020, 48(6): 77-83.
MAO J W, XU B, HU Y K, et al.Summary of research and application of solar organic Rankine cycle[J]. Cryogenics & superconductivity, 2020, 48(6): 77-83.
[3] 唐景春, 李俊辉, 李晶, 等. 新型复叠有机朗肯循环太阳能热发电系统的性能分析[J]. 太阳能学报, 2023, 44(6): 308-314.
TANG J C, LI J H, LI J, et al.Performance analysis of novel cascade organic Rankine cycle solar thermal power generation system[J]. Acta energiae solaris sinica, 2023, 44(6): 308-314.
[4] 张洁雄, 张杰, 穆永超, 等. 太阳能有机朗肯循环发电系统模拟优化研究[J]. 太阳能学报, 2023, 44(9): 236-240.
ZHANG J X, ZHANG J, MU Y C, et al.Study on simulation and optimization of solar organic Rankine cycle power generation system[J]. Acta energiae solaris sinica, 2023, 44(9): 236-240.
[5] RAO Z H, PENG C Y, WANG Y Q, et al.Response behaviors of CO2 transcritical Rankine cycle based parabolic trough solar power plant to cloud disturbance[J]. Applied thermal engineering, 2021, 189: 116722.
[6] ZHAO L, ZHANG Y, DENG S, et al.Solar driven ORC-based CCHP: comparative performance analysis between sequential and parallel system configurations[J]. Applied thermal engineering, 2018, 131: 696-706.
[7] 杨俊兰, 李梦希, 韩一飞, 等. 新型槽式太阳能耦合CO2跨临界朗肯循环发电系统性能研究[J]. 太阳能学报, 2025, 46(2): 488-495.
YANG J L, LI M X, HAN Y F, et al.Performance study of novel through solar concentrator coupled CO2transcritical Rankine cycle power generation systems[J]. Acta energiae solaris sinica, 2025, 46(2): 488-495.
[8] 张建元. 太阳能热驱动多联供关键过程及系统构建模拟研究[D]. 天津: 天津大学, 2017.
ZHANG J Y.Research on key processes and simulation and construction of multi-generation system hermally driven by solar energy[D]. Tianjin: Tianjin University, 2017.
[9] FORRISTALL R.Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver[R]. National Renewable Energy Laboratory, 2003.
[10] 王慧敏. 太阳能有机朗肯循环热电联产性能分析及优化[D]. 吉林: 东北电力大学, 2022.
WANG H M.Performance analysis and optimization of solar organic Rankine cycle cogeneration system[D]. Jilin: Northeast Dianli University, 2022.
[11] COCCO D, CAU G.Energy and economic analysis of concentrating solar power plants based on parabolic trough and linear Fresnel collectors[J]. Proceedings of the institution of mechanical engineers, part A: journal of power and energy, 2015, 229(6): 677-688.
[12] WU C, WAN Y K, LIU Y, et al.Thermodynamic simulation and economic analysis of a novel liquid carbon dioxide energy storage system[J]. Journal of energy storage, 2022, 55: 105544.
[13] LIU T Y, YANG J Z, YANG Z, et al.Thermo-economic optimization of supercritical CO2 Brayton cycle on the design point for application in solar power tower system[J]. E3S web of conferences, 2021, 242: 01002.
[14] 蔡义林. 低温余热利用方案的比较及新型联合循环系统的研究[D]. 重庆: 重庆大学, 2015.
CAI Y L.Study on comparison of low-temperature waste heat utilizations and new type of combined system[D]. Chongqing: Chongqing University, 2015.
[15] 李芳, 李东坪. 基于熵权法的组合评价模型[J]. 信息技术与信息化, 2021(9): 148-150.
LI F, LI D P.Combination evaluation model based on entropy weight method[J]. Information technology and informatization, 2021(9): 148-150.
[16] 廖吉香, 郑群, 刘兴业, 等. CO2与R41跨临界朗肯循环低温发电系统比较分析[J]. 热能动力工程, 2017, 32(9): 69-73, 124-125.
LIAO J X, ZHENG Q, LIU X Y, et al. Comparison analysis of low-temperature power generation system with transcritical Rankine cycle using R41 and CO2[J]. Journal of engineering for thermal energy and power, 2017, 32(9): 69-73, 124-125.
[17] 魏占海. 基于超临界CO2朗肯循环的太阳能光热发电系统分析[J]. 节能, 2022, 41(9): 17-21.
WEI Z H.Analysis of solar thermal power generation system based on supercritical CO2 Rankine cycle[J]. Energy conservation, 2022, 41(9): 17-21.
基金
天津市自然科学基金(24JCYBJC00730); 天津市科技特派员项目(22YDTPJC00020); 天津市建筑绿色功能材料重点实验室开放基金资助(2024-01-18)