针对西北农村地区住宅建筑采暖季供暖问题,搭建太阳能-空气源热泵供暖系统(SASHP)。该系统以某西北农村住宅建筑为例,提出一种新型分区域分时段的柔性温度控制策略,并选取3个目标函数对供暖系统进行优化设计。结果表明,与“常用策略”相比,所提出的控制策略在整个供暖期平均温度为16.95 ℃,最高温度为18.87 ℃,太阳能保证率为25.11%,温度曲线更加柔和;生命周期成本优化方案具有更高的经济效益,目标建筑单位供热成本优化方案的静态回收期与单位供热成本最低,太阳能保证率优化方案的环境效益最高。研究结果为在不同目标下的供暖系统设计提供参考。
Abstract
To address heating challenges in rural residential buildings in Northwest China, a solar-air source heat pump (SASHP) heating system is being implemented. Using a specific rural residential building in Northwest China as an example, a novel flexible temperature control strategy based on sub-area and time-period segmentation is proposed, and the heating system is optimized using three objective functions. The results indicate that compared to the “constant temperature control strategy”, the proposed control method maintains an average temperature of 16.95 ℃ throughout the heating season, with a maximum temperature of 18.87 ℃ and a solar fraction of 25.11%, resulting in a smoother temperature curve. The life cycle cost optimization scheme yields greater economic benefits, while the target building unit heating cost optimization scheme achieves the shortest static payback period and lowest unit heating cost. Conversely, the solar fraction optimization scheme stands out for its superior environmental benefits. These findings offer valuable insights for the design of heating systems tailored to diverse objectives.
关键词
太阳能 /
供暖 /
优化 /
控制策略 /
TRNSYS /
节能
Key words
solar energy /
heating /
optimization /
control strategy /
TRNSYS /
energy saving
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杜永恒, 张亚南, 杨蕾, 等. 太阳能-空气源双能源复合供暖在严寒地区农村住宅中的应用研究[J]. 太阳能, 2023(7): 91-100.
DU Y H, ZHANG Y N, YANG L, et al.Research on the application of solar-air source dual energy composite heating in rural residential buildings in severe cold regions[J]. Solar energy, 2023(7): 91-100.
[2] 宋航, 赵鹏, 申妙. 太阳能-空气源热泵双联系统在高寒地区的应用[J]. 区域供热, 2023(3): 112-122.
SONG H, ZHAO P, SHEN M.The application of solar air-source heat pump combined heating system in alpine region[J]. District heating, 2023(3): 112-122.
[3] 马一程, 席剑飞, 蔡杰, 等. 太阳能-空气源热泵热水系统多水箱设计方案的优化与能效分析[J]. 太阳能学报, 2023, 44(10): 229-236.
MA Y C, XI J F, CAI J, et al.Multi-tank system design for solar-assisted air source heat pump hot water system: optimization and energy efficiency analysis[J]. Acta energiae solaris sinica, 2023, 44(10): 229-236.
[4] 谭心, 吴林锋, 虞启辉, 等. 基于ANFIS的太阳能-空气源热泵供暖系统温度控制研究[J]. 太阳能学报, 2024, 45(2): 16-22.
TAN X, WU L F, YU Q H, et al.Temperature control research of solar-air source heat pump heating system based on ANFIS[J]. Acta energiae solaris sinica, 2024, 45(2): 16-22.
[5] 罗薇, 王利新. 拉萨地区居住建筑保温及太阳能集热面积协同优化设计研究[J]. 建筑节能(中英文), 2023, 51(7): 36-41, 61.
LUO W, WANG L X.Collaborative optimization design of building thermal insulation and solar heat collection area of residential buildings in Lhasa[J]. Building energy efficiency, 2023, 51(7): 36-41, 61.
[6] 张俊峰, 徐继军, 徐建伟, 等. 基于改进粒子群算法的中深层地源热泵供暖系统运行优化[J]. 太阳能学报, 2024, 45(4): 311-317.
ZHANG J F, XU J J, XU J W, et al.Optimization of middle and deep ground source heat pump heating system based on improved particle swarm optimization algorithm[J]. Acta energiae solaris sinica, 2024, 45(4): 311-317.
[7] LONG T H, QIAO Z Y, WANG M L, et al.Performance analysis and optimization of a solar-air source heat pump heating system in Tibet, China[J]. Energy and buildings, 2020, 220: 110084.
[8] GUO F Q, LI Y, XU Z, et al.Multi-objective optimization of multi-energy heating systems based on solar, natural gas, and air-energy[J]. Sustainable energy technologies and assessments, 2021, 47: 101394.
[9] LIU Y F, ZHAO Y T, CHEN Y W, et al.Design optimization of the solar heating system for office buildings based on life cycle cost in Qinghai-Tibet plateau of China[J]. Energy, 2022, 246: 123288.
[10] 马江燕, 邓保顺, 侯卫华, 等. 太阳能耦合空气源-水源热泵复合供暖系统性能分析[J]. 暖通空调, 2023, 53(7): 22-27.
MA J Y, DENG B S, HOU W H, et al.Performance analysis of a solar energy coupled air-source and water-source heat pump composite heating system[J]. Heating ventilating & air conditioning, 2023, 53(7): 22-27.
[11] ZHANG Q, YANG Z, LI N, et al.A novel solar photovoltaic/thermal assisted gas engine driven energy storage heat pump system (SESGEHPs) and its performance analysis[J]. Energy conversion and management, 2019, 184: 301-314.
[12] 方赵嵩, 李大伟, 唐天巍, 等. 我国农村居住建筑冬季采暖热舒适分析[J]. 建筑热能通风空调, 2022, 41(9): 26-29, 65.
FANG Z S, LI D W, TANG T W, et al.Analysis of thermal comfort of rural residential buildings in heating condition of winter in China[J]. Building energy & environment, 2022, 41(9): 26-29, 65.
[13] 闫秀英, 于鹏飞, 王登甲. 太阳能与空气源热泵联合按需分时供暖柔性节能控制策略[J]. 分布式能源, 2023, 8(1): 1-10.
YAN X Y, YU P F, WANG D J.Flexible energy-saving control strategy of a solar-ASHP integrated heating system based on time-sharing heat demand[J]. Distributed energy, 2023, 8(1): 1-10.
[14] 倪丹, 杨方德, 彭淑英, 等. 基于TRNSYS的太阳能-空气能高效供暖系统仿真模拟研究[J]. 暖通空调, 2023, 53(S1): 8-11.
NI D, YANG F D, PENG S Y, et al.Research on simulation of solar-air energy efficient heating system based on TRNSYS[J]. Heating ventilating & air conditioning, 2023, 53(S1): 8-11.
[15] 秦永星, 李鹏超, 陈景, 等. 基于TRNSYS太阳能空气源热泵供暖系统模拟研究[J]. 建筑热能通风空调, 2021, 40(11): 21-24, 79.
QIN Y X, LI P C, CHEN J, et al.Based on TRNSYS combined solar and air source heat pump heating system simulation research[J]. Building energy & environment, 2021, 40(11): 21-24, 79.
[16] 闫秀英, 夏宇. 太阳能-空气源热泵热水系统新型组合优化设计[J]. 分布式能源, 2024, 9(4): 33-42.
YAN X Y, XIA Y.Research on new combination optimization design of solar-air source heat pump hot water system[J]. Distributed energy, 2024, 9(4): 33-42.
[17] BEHZADI A, ARABKOOHSAR A, SADI M, et al.A novel hybrid solar-biomass design for green off-grid cold production, techno-economic analysis and optimization[J]. Solar energy, 2021, 218: 639-651.
[18] 国家能源局. 2024年全国电力工业统计数据[R/OL]. (2025-01-23)[2025-06-24]. https://www.nea.gov.cn.
National Energy Administration. National power industry statistics for2024[R/OL]. (2025-1-23)[2025-6-24]. https://www.nea.gov.cn.
基金
西部绿色建筑国家重点实验室自主研发项目(LSZZ202208); 空调系统智慧调控技术“科学家+工程师”队伍(24KGDW0028)