风力机三维旋转效应下圆弧型沟槽减阻机理的研究

杨瑞, 石振鹏, 田楠, 曾学仁, 方亮, 包广超

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 346-352.

PDF(7036 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(7036 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 346-352. DOI: 10.19912/j.0254-0096.tynxb.2024-0368
第二十七届中国科协年会学术论文

风力机三维旋转效应下圆弧型沟槽减阻机理的研究

  • 杨瑞1,2, 石振鹏1, 田楠3, 曾学仁3, 方亮3, 包广超3
作者信息 +

RESEARCH ON DRAG REDUCTION MECHANISM OF ARC-SHAPED GROOVE UNDER THREE-DIMENSIONAL ROTATION EFFECT

  • Yang Rui1,2, Shi Zhenpeng1, Tian Nan3, Zeng Xueren3, Fang Liang3, Bao Guangchao3
Author information +
文章历史 +

摘要

为研究三维旋转下沟槽减阻机理,以NREL 5 MW风力机为研究对象,在叶片展向位置18%~20%处布置横向圆弧型沟槽,通过数值模拟方法计算不同工况下风力机叶片三维截面翼型和对应工况下二维翼型的气动性能,对截面翼型的表面压力系数与二维翼型的表面压力系数以及流场流动状态进行对比。结果表明,截面翼型布置圆弧型沟槽在一定风速范围内可改善截面翼型的压力分布,有效抑制流动分离,提高翼型升阻比;而二维翼型布置圆弧型沟槽对流动分离的抑制并不明显。通过二维沟槽和三维沟槽内流动状态对比,发现截面槽内三维旋转效应是沟槽减阻的根本原因。翼型失速前,沟槽内的漩涡将高速流体带出并注入边界层中,使得沟槽后方的流速变快,翼型失速后沟槽内的漩涡捕获了低能量流体,两者均改善了截面翼型的压力分布。

Abstract

To investigate the drag reduction mechanism of grooves under three-dimensional rotation, the NREL 5 MW wind turbine is taken as the research object, and transverse arc-shaped grooves are arranged at 18%-20% spanwise position on the blade. The aerodynamic performance of the three-dimensional sectional airfoil and the corresponding two-dimensional airfoil under different operating conditions are calculated using numerical simulation methods. The surface pressure coefficients of the section airfoil are compared with those of the two-dimensional airfoil, and the flow field status is analyzed. The results show that the arc-shaped grooves on the section airfoil can improve the pressure distribution of the airfoil and effectively suppress flow separation within a certain range of wind speeds, thereby increasing the lift-to-drag ratio. However, the suppression of flow separation by the arc-shaped grooves on the two-dimensional airfoil is not significant. By comparing the flow status inside the two-dimensional grooves and three-dimensional grooves, it is found that the three-dimensional rotational effect inside the grooves is the fundamental reason for drag reduction. Before stall, the vortices inside the grooves carry high-speed fluid out and inject it into the boundary layer, resulting in accelerated flow velocity behind the grooves. After stall, the vortices inside the grooves capture low-energy fluid, both of which improve the pressure distribution of the section airfoil.

关键词

风力机 / 旋转流动 / 减阻 / 数值模拟 / 气动性能

Key words

wind turbines / rotation flow / drag reduction / numerical simulation / aerodynamic performance

引用本文

导出引用
杨瑞, 石振鹏, 田楠, 曾学仁, 方亮, 包广超. 风力机三维旋转效应下圆弧型沟槽减阻机理的研究[J]. 太阳能学报. 2025, 46(7): 346-352 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0368
Yang Rui, Shi Zhenpeng, Tian Nan, Zeng Xueren, Fang Liang, Bao Guangchao. RESEARCH ON DRAG REDUCTION MECHANISM OF ARC-SHAPED GROOVE UNDER THREE-DIMENSIONAL ROTATION EFFECT[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 346-352 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0368
中图分类号: TK83   

参考文献

[1] YOUSEFI R M, KHALEGHINIA J, ESHAGH NIMVARI M, et al.Performance improvement of Darrieus wind turbine using different cavity layouts[J]. Energy conversion and management, 2021, 246: 114693.
[2] 杨瑞, 顾恩鑫, 周楠楠, 等. V型沟槽对钝尾缘翼型流场分布及气动性能影响的研究[J]. 太阳能学报, 2022, 43(4): 402-408.
YANG R, GU E X, ZHOU N N, et al.Study on influence of V-groove on flow field distribution and aerodynamic performance of blunt trailing edge airfoil[J]. Acta energiae solaris sinica, 2022, 43(4): 402-408.
[3] 牛志罡, 罗大海, 王子尧. 表面微沟槽对风力机翼型气动性能的影响研究[J]. 动力工程学报, 2022, 42(12): 1246-1254.
NIU Z G, LUO D H, WANG Z Y.Influence of surface riblets on the aerodynamic performance of wind turbine airfoils[J]. Journal of Chinese Society of Power Engineering, 2022, 42(12): 1246-1254.
[4] NILI-AHMADABADI M, NEMATOLLAHI O, FATEHI M, et al.Evaluation of aerodynamic performance enhancement of Risø_B1 airfoil with an optimized cavity by PIV measurement[J]. Journal of visualization, 2020, 23(4): 591-603.
[5] SALLEH M B, KAMARUDDIN N M, MOHAMED-KASSIM Z.A qualitative study of vortex trapping capability for lift enhancement on unconventional wing[J]. IOP conference series: materials science and engineering, 2018, 370: 012054.
[6] 袁一平, 杨华, 石亚丽, 等. 风力机专用翼型表面微沟槽减阻特性研究[J]. 工程热物理学报, 2018, 39(6): 1258-1266.
YUAN Y P, YANG H, SHI Y L, et al.Study on drag reduction characteristics of airfoil for wind turbine with microgrooves on surface[J]. Journal of engineering thermophysics, 2018, 39(6): 1258-1266.
[7] 党志高, 毛昭勇, 田文龙. 基于微沟槽表面海流发电叶片翼型降噪特性研究[J]. 工程热物理学报, 2020, 41(6): 1367-1374.
DANG Z G, MAO Z Y, TIAN W L.Noise reduction characteristics of hydrofoils of marine current turbines with microgrooves on the surface[J]. Journal of engineering thermophysics, 2020, 41(6): 1367-1374.
[8] 杨筱沛, 王威, 蒋博彦, 等. 基于NSGA-Ⅱ算法的二维翼型凹槽结构优化[J]. 工程热物理学报, 2019, 40(4): 804-807.
YANG X P, WANG W, JIANG B Y, et al.Groove-structure optimization of the two-dimensional airfoil based on NSGA-Ⅱ algorithm[J]. Journal of engineering thermophysics, 2019, 40(4): 804-807.
[9] ALI Z O, LIN T E, ZEBUA A G, et al.The effects of surface modification on aerodynamic characteristics of airfoil DU 06 W200 at low Reynolds numbers[J]. International journal of thermofluids, 2022, 16: 100208.
[10] OLSMAN W F J. Influence of a cavity on the dynamical behaviour of an airfoil[D]. Holland: Technische Universiteit Eindhoven,2010.
[11] 刘霞, 张一楠, 曹慧晶, 等. 基于凹凸前缘方法的风力机翼型气动噪声研究[J]. 太阳能学报, 2023, 44(4): 125-131.
LIU X, ZHANG Y N, CAO H J, et al.Study on aerodynamic noise of wind airfoil based on concave-convex leading-edge method[J]. Acta energiae solaris sinica, 2023, 44(4): 125-131.
[12] WU Z R, LI S G, LIU M, et al.Numerical research on the turbulent drag reduction mechanism of a transverse groove structure on an airfoil blade[J]. Engineering applications of computational fluid mechanics, 2019, 13(1): 1024-1035
[13] FATEHI M, NILI-AHMADABADI M, NEMATOLLAHI O, et al.Aerodynamic performance improvement of wind turbine blade by cavity shape optimization[J]. Renewable energy, 2019, 132: 773-785.
[14] 朱呈勇, 王同光, 邵涛. 水平轴风力机三维旋转效应数值模拟研究[J]. 太阳能学报, 2019, 40(6): 1747-1755.
ZHU C Y, WANG T G, SHAO T.Investigation into three-dimensional rotational effect on HAWT with numerical simulations[J]. Acta energiae solaris sinica, 2019, 40(6): 1747-1755.
[15] 何闯, 曹人靖. 三维效应对大型风力机叶片气动-结构特性影响的数值研究[J]. 太阳能学报, 2023, 44(10): 291-295.
HE C, CAO R J.Numerical study on aerodynamic-structure characteristics of large wind turbine blades considering three-dimensional effects[J]. Acta energiae solaris sinica, 2023, 44(10): 291-295.
[16] 刘玥. 翼面沟槽结构改善小型风力机气动性能的数值模拟研究[D]. 泉州: 华侨大学, 2021.
LIU Y.Numerical study of the effect of surface grooves on the aerodynamic performance improvement of small wind turbines[D]. Quanzhou: Huaqiao University, 2021.

基金

国家自然科学基金(51965034)

PDF(7036 KB)

Accesses

Citation

Detail

段落导航
相关文章

/