基于FLC-MPC的风氢耦合发电系统超前控制策略研究

徐帅, 刘莘轶, 徐加陵, 刘单珂, 陈昊, 于立军

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 218-227.

PDF(2104 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2104 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 218-227. DOI: 10.19912/j.0254-0096.tynxb.2024-0376
第二十七届中国科协年会学术论文

基于FLC-MPC的风氢耦合发电系统超前控制策略研究

  • 徐帅1, 刘莘轶2, 徐加陵1, 刘单珂1, 陈昊1,3, 于立军1
作者信息 +

RESEARCH ON ADVANCED CONTROL STRATEGY FOR WIND HYDROGEN HYBRID POWER GENERATION SYSTEM BASED ON FLC-MPC

  • Xu Shuai1, Liu Xinyi2, Xu Jialing1, Liu Shanke1, Chen Hao1,3, Yu Lijun1
Author information +
文章历史 +

摘要

针对风电实际功率与日前预测功率不匹配及风电不确定性给电网调度和运行增加压力等问题,提出一种以降低跟踪误差和平抑出力波动为目标的风氢耦合发电系统控制策略。该策略耦合模糊逻辑控制(FLC)算法和模型预测控制(MPC)算法,兼具FLC算法鲁棒性强、实时性好的优点和MPC算法超前优化调控的特点。首先,通过MPC对FLC的隶属度函数参数进行滚动优化;然后,将优化后的参数用于下一时刻的模糊控制器(FC);最后,仿真结果表明FLC-MPC对风氢耦合发电系统的调控效果更优,与FLC相比,RMSE降低4.03%,最大功率波动降低23.17%,惩罚电量减少14.98%,氢储能系统持续调节能力增强11.58%。

Abstract

To mitigate the discrepancies between actual wind power output and day-ahead forecasted power, and to alleviate the heightened pressure on grid dispatch and operation caused by wind power uncertainty, a control strategy for a wind-hydrogen hybrid power generation system is introduced. This strategy aims to minimize tracking errors and smooth power output fluctuations. It integrates fuzzy logic control (FLC) and model predictive control (MPC) algorithms, leveraging the robustness and real-time benefits of FLC with the anticipatory optimization capabilities of MPC. Initially, the membership function parameters of the FLC are optimized iteratively using MPC. Subsequently, the optimized parameters are applied to the fuzzy controller (FC) in the next time step. Simulation results demonstrate that the FLC-MPC strategy significantly enhances regulation performance for the wind-hydrogen hybrid power generation system. In comparison to FLC alone, the root mean square error (RMSE) is decreased by 4.03%, maximum power fluctuation is reduced by 23.17%, penalty energy is diminished by 14.98%, and the continuous regulation capacity of the hydrogen energy storage system is improved by 11.58%.

关键词

风力发电 / 氢储能 / 模糊控制 / 模型预测控制 / 超前控制策略

Key words

wind power / hydrogen storage / fuzzy control / model predictive control / advanced control strategy

引用本文

导出引用
徐帅, 刘莘轶, 徐加陵, 刘单珂, 陈昊, 于立军. 基于FLC-MPC的风氢耦合发电系统超前控制策略研究[J]. 太阳能学报. 2025, 46(7): 218-227 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0376
Xu Shuai, Liu Xinyi, Xu Jialing, Liu Shanke, Chen Hao, Yu Lijun. RESEARCH ON ADVANCED CONTROL STRATEGY FOR WIND HYDROGEN HYBRID POWER GENERATION SYSTEM BASED ON FLC-MPC[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 218-227 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0376
中图分类号: TK82   

参考文献

[1] 曹蕃, 郭婷婷, 陈坤洋, 等. 风电耦合制氢技术进展与发展前景[J]. 中国电机工程学报, 2021, 41(6): 2187-2201.
CAO F, GUO T T, CHEN K Y, et al.Progress and development prospect of coupled wind and hydrogen systems[J]. Proceedings of the CSEE, 2021, 41(6): 2187-2201.
[2] 何柳青. 基于深度学习的短期风电功率区间预测[D]. 西安: 西安理工大学, 2023.
HE L Q.Short-term wind power internal prediction based on deep learning[D]. Xi’an: Xi’an University of Technology, 2023.
[3] 李相俊, 王上行, 惠东. 电池储能系统运行控制与应用方法综述及展望[J]. 电网技术, 2017, 41(10): 3315-3325.
LI X J, WANG S X, HUI D.Summary and prospect of operation control and application method for battery energy storage systems[J]. Power system technology, 2017, 41(10): 3315-3325.
[4] 邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(4): 469-477.
SHAO Z G, YI B L.Developing trend and present status of hydrogen energy and fuel cell development[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 469-477.
[5] 蒋敏华, 肖平, 刘入维, 等. 氢能在我国未来能源系统中的角色定位及“再电气化” 路径初探[J]. 热力发电, 2020, 49(1): 1-9.
JIANG M H, XIAO P, LIU R W, et al.The role of hydrogen energy in China’s future energy system and preliminary study on the route of re-electrification[J]. Thermal power generation, 2020, 49(1): 1-9.
[6] BECCALI M, BRUNONE S, FINOCCHIARO P, et al.Method for size optimisation of large wind-hydrogen systems with high penetration on power grids[J]. Applied energy, 2013, 102: 534-544.
[7] 牟亚雪. 风氢混合发电系统的协调控制及能量管理研究[D]. 成都: 电子科技大学, 2022.
MOU Y X.Research on coordinated control and energy management of wind hydrogen hybrid power generation system[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
[8] 邓浩, 陈洁, 腾扬新, 等. 风氢耦合系统能量管理策略研究[J]. 太阳能学报, 2021, 42(1): 256-263.
DENG H, CHEN J, TENG Y X, et al.Energy management strategy of wind power coupled with hydrogen system[J]. Acta energiae solaris sinica, 2021, 42(1): 256-263.
[9] 蔡国伟, 陈冲, 孔令国, 等. 风氢耦合并网系统控制策略[J]. 太阳能学报, 2018, 39(10): 2970-2980.
CAI G W, CHEN C, KONG L G, et al.Control strategy of hybrid grid-connected system of wind and hydrogen[J]. Acta energiae solaris sinica, 2018, 39(10): 2970-2980.
[10] 卢捷, 于立军, 郑培, 等. 风氢耦合系统超前控制策略研究[J]. 太阳能学报, 2022, 43(3): 53-60.
LU J, YU L J, ZHENG P, et al.Research on advanced control strategy of wind hydrogen coupling system[J]. Acta energiae solaris sinica, 2022, 43(3): 53-60.
[11] 秦磊, 董海鹰, 王润杰. 基于卡尔曼滤波和模型预测控制的混合储能平抑风电功率波动策略[J]. 电网技术, 2024, 48(10): 4286-4297.
QIN L, DONG H Y, WANG R J.Hybrid energy storage based on Kalman filter and model predictive control to smooth out wind power fluctuation strategy[J]. Power system technology, 2024, 48(10): 4286-4297.
[12] 王嘉祺. 基于权重调节MPC的风-光-储-氢耦合系统协调控制[D]. 吉林: 东北电力大学, 2023.
WANG J Q.Coordinated control of wind solar storage hydrogen coupling system based on weight adjustment MPC[D]. Jilin: Northeast Dianli University, 2023.
[13] MUYEEN S M, TAMURA J, MURATA T.Stability augmentation of a grid-connected wind farm[M]. Cham: Springer London, 2009.
[14] PU Y C, LI Q, CHEN W R, et al.Hierarchical energy management control for islanding DC microgrid with electric-hydrogen hybrid storage system[J]. International journal of hydrogen energy, 2019, 44(11): 5153-5161.
[15] WANG S H, HUANG X S, LÓPEZ J M, et al. Fuzzy adaptive-equivalent consumption minimization strategy for a parallel hybrid electric vehicle[J]. IEEE access, 2019, 7: 133290-133303.
[16] MARZOUGUI H, KADRI A, MARTIN J P, et al.Implementation of energy management strategy of hybrid power source for electrical vehicle[J]. Energy conversion and management, 2019, 195: 830-843.
[17] LOUKA P, GALANIS G, SIEBERT N, et al.Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering[J]. Journal of wind engineering and industrial aerodynamics, 2008, 96(12): 2348-2362.
[18] 郑培, 于立军, 侯胜亚, 等. 基于卡尔曼滤波修正的多步风电功率预测[J]. 热能动力工程, 2020, 35(4): 235-241.
ZHENG P, YU L J, HOU S Y, et al.Multi-step wind power forecasting based on Kalman filter modification[J]. Journal of engineering for thermal energy and power, 2020, 35(4): 235-241.
[19] RAJABIOUN R.Cuckoo optimization algorithm[J]. Applied soft computing, 2011, 11(8): 5508-5518.
[20] 李滨, 邓有雄, 陈碧云. 含超短期风功率预测增强处理的风储系统超前滚动优化控制策略[J]. 电网技术, 2021, 45(6): 2280-2287.
LI B, DENG Y X, CHEN B Y.Advanced rolling optimization control strategy for wind storage system with enhanced ultra-short-term wind power prediction[J]. Power system technology, 2021, 45(6): 2280-2287.
[21] 李建林, 赵文鼎, 梁忠豪, 等. 基于混合电解槽制氢系统的功率分配技术[J]. 电力系统自动化, 2024, 48(13): 9-18.
LI J L, ZHAO W D, LIANG Z H, et al.Power distribution technology based on hybrid electrolyzer hydrogen production system[J]. Automation of electric power systems, 2024, 48(13): 9-18.
[22] 梁建英, 陈维荣. 基于FFRLS的多堆燃料电池系统功率分配方法[J]. 西南交通大学学报, 2022, 57(4): 722-728, 782.
LIANG J Y, CHEN W R.Power distribution method of multi-stack fuel cell system based on forgetting factor recursive least square[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 722-728, 782.

基金

2021年度上海交通大学-国家电投“未来能源计划联合基金”

PDF(2104 KB)

Accesses

Citation

Detail

段落导航
相关文章

/