在风电机组数据采集与监视控制(SCADA)系统数据中,若噪声数据密度过高,则会在预处理过程中误清洗额定功率数据。使用基于密度的噪声应用空间聚类(DBSCAN)算法剔除额定功率数据附近的噪声数据点,确保仅保留正常的额定功率数据,然后在“风速-功率”曲线上找到额定功率数据与其他数据的分界线,将上半部分暂存,对下半部分采用肖维勒准则与Box_Cox变换相结合的方式处理,最后将两部分数据合并,可有效减少风电机组SCADA数据预处理时,因噪声数据密度过高而误清洗额定功率数据的问题。
Abstract
In the SCADA system data of wind turbines, if the density of noise data is too high, it may mistakenly clean the rated power data during the preprocessing process. To address this issue, the DBSCAN clustering algorithm can be used to remove noise data points near the rated power data, ensuring that only normal rated power data is retained. Then, on the wind speed-power curve, identify the boundary between the rated power data and other data, and temporarily store the upper part. For the lower part, apply a combination of Chauvenet's criterion and Box-Cox transformation to handle it. Finally, merge the two parts of the data. This approach can effectively reduce the problem of mistakenly cleaning rated power data due to high noise data density during the preprocessing of wind turbine SCADA data.
关键词
风电机组 /
SCADA系统 /
数据处理 /
额定功率数据 /
DBSCAN聚类算法 /
肖维勒准则
Key words
wind turbines /
SCADA systems /
data processling /
rated power data /
DBSCAN clustering algorithm /
Chauvenet criterion
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 苏连成, 朱娇娇, 郭高鑫, 等. 基于XGBoost和Wasserstein距离的风电机组塔架振动监测研究[J]. 太阳能学报, 2023, 44(1): 306-312.
SU L C, ZHU J J, GUO G X, et al.Research on wind turbine tower vibration monitoring based on XGBoost and Wasserstein distance[J]. Acta energiae solaris sinica, 2023, 44(1): 306-312.
[2] 陈雪峰, 李继猛, 程航, 等. 风力发电机状态监测和故障诊断技术的研究与进展[J]. 机械工程学报, 2011, 47(9): 45-52.
CHEN X F, LI J M, CHENG H, et al.Research and application of condition monitoring and fault diagnosis technology in wind turbines[J]. Journal of mechanical engineering, 2011, 47(9): 45-52.
[3] 李辉, 胡姚刚, 唐显虎, 等. 并网风电机组在线运行状态评估方法[J]. 中国电机工程学报, 2010, 30(33): 103-109.
LI H, HU Y G, TANG X H, et al.Method for on-line operating conditions assessment for a grid-connected wind turbine generator system[J]. Proceedings of the CSEE, 2010, 30(33): 103-109.
[4] 胡姚刚, 刘怀盛, 时萍萍, 等. 风电机组偏航系统故障诊断与寿命预测综述[J]. 中国电机工程学报, 2022, 42(13): 4871-4884.
HU Y G, LIU H S, SHI P P, et al.Overview of fault diagnosis and life prediction for wind turbine yaw system[J]. Proceedings of the CSEE, 2022, 42(13): 4871-4884.
[5] 张舒翔, 刘晓彤, 郭旭峰, 等. 基于SCADA数据驱动的风电机组状态监测[J]. 电工技术, 2022(22): 47-50.
ZHANG S X, LIU X T, GUO X F, et al.Wind turbine condition monitoring based on SCADA data drive[J]. Electric engineering, 2022(22): 47-50.
[6] 马良玉, 袁乃正. 基于CFSFDP与LightGBM的风电机组异常状态预警研究[J]. 太阳能学报, 2023, 44(5): 401-406.
MA L Y, YUAN N Z.Research on abnormal condition early warning for wind turbine based on CFSFDP and LIGHTGBM[J]. Acta energiae solaris sinica, 2023, 44(5): 401-406.
[7] 刘宜荣. 基于SCADA数据的风电机组故障诊断与预警的研究[D]. 济南: 山东大学, 2021.
LIU Y R.Research on fault diagnosis and early warning of wind turbine based on SCADA data[D]. Ji’nan: Shandong University, 2021.
[8] 张佳楠, 薛安荣. 风电机组异常数据检测、清洗与解释方法研究[J]. 计算机与数字工程, 2023, 51(9): 2195-2200, 2217.
ZHANG J N, XUE A R.Research on wind turbine anomaly data detection, cleaning and interpretation methods[J]. Computer & digital engineering, 2023, 51(9): 2195-2200, 2217.
[9] ZUO C M, DAI J C, LI G, et al.Investigation of data pre-processing algorithms for power curve modeling of wind turbines based on ECC[J]. Energies, 2023, 16(6): 2679.
[10] CHEN Z N, WANG J C, GUO J F, et al.Statistical method of low efficiency wind turbine generating wind power curve based on operating data[J]. Journal of Physics: Conference Series, 2022, 2218(1): 012062.
[11] 刘玉涵. 基于数据驱动的风电机组关键部件健康状态监测方法研究[D]. 兰州: 兰州理工大学, 2024.
LIU Y H.Research on health condition monitoring method of wind turbine critical component based on data-driven[D]. Lanzhou: Lanzhou University of Technology, 2024.
[12] GB/T 18451.2—2021, 风力发电机组功率特性测试[S].
GB/T 18451.2—2021, Wind turbine-Power performance measurements of electricity producing[S].
[13] 李鹏飞, 雷未, 虞冬冬, 等. 基于密度聚类的监测数据漂移动态校正算法[J]. 人民长江, 2023, 54(11): 221-227.
LI P F, LEI W, YU D D, et al.Dynamic correction method for monitoring data drift based on density clustering[J]. Yangtze river, 2023, 54(11): 221-227.
[14] 李特, 王荣喜, 高建民. 风电机组数据采集与监控系统异常数据识别方法[J]. 西安交通大学学报, 2024, 58(3): 106-116.
LI T, WANG R X, GAO J M.Method for identifying abnormal data in wind turbine data acquisition and monitoring system[J]. Journal of Xi’an Jiaotong University, 2024, 58(3): 106-116.
[15] 王勃, 李振元, 孙勇, 等. 基于最小二乘滤波-肖维勒准则的光伏异常功率数据清洗及预测应用[J]. 昆明理工大学学报(自然科学版), 2021, 46(2): 59-71.
WANG B, LI Z Y, SUN Y, et al.Application of photovoltaic abnormal power data cleaning based on least squares filter-chauvenet criterion[J]. Journal of Kunming University of Science and Technology (natural sciences), 2021, 46(2): 59-71.
[16] 韩则胤, 王宁, 苏宝定, 等. 基于Box-Cox变换结合多种算法的风电机组数据预处理方法研究[J]. 计算机测量与控制, 2024, 32(1): 150-156, 164.
HAN Z Y, WANG N, SU B D, et al.Research on wind turbine data preprocessing method combined with multiple algorithms based on Box-Cox transformation[J]. Computer measurement & control, 2024, 32(1): 150-156, 164.
基金
内蒙古自治区科技计划(2021GG0433)