颗粒硅中氢杂质对直拉单晶硅的影响及控制措施分析

李杰, 黄虎一雄, 章金兵

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 568-576.

PDF(3055 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3055 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 568-576. DOI: 10.19912/j.0254-0096.tynxb.2024-0390
第二十七届中国科协年会学术论文

颗粒硅中氢杂质对直拉单晶硅的影响及控制措施分析

  • 李杰1,2, 黄虎一雄1,2, 章金兵2
作者信息 +

ANALYSIS OF EFFECTS OF HYDROGEN IMPURITIES IN GRANULAR POLYSILICON ON CZOCHRALSKI-GROWN MONOCRYSTALLINE SILICON AND CONTROL MEASURES

  • Li Jie1,2, Huang Huyixiong1,2, Zhang Jinbing2
Author information +
文章历史 +

摘要

硅烷流化床法制备的颗粒多晶硅因工艺缺陷使得其氢杂质含量比改良西门子法制备的棒状硅高,这导致在后续的直拉单晶硅生产过程中产生“氢跳”现象,该现象会对设备和产品造成一系列的负面影响。产线上和研究者们都在不断地寻找合适的方法去除颗粒硅中的氢杂质,以避免“氢跳”现象的发生,但目前针对此类的研究报道尚少。该文分析了颗粒硅内氢杂质可能的形成过程,阐述了颗粒硅中氢杂质对直拉单晶硅的影响及其控制措施,提出颗粒硅中氢杂质去除所面临的问题与挑战。最后,对未来有关颗粒硅中氢杂质的研究发展提出建议。

Abstract

The silane fluidized bed method utilized in the preparation of granular polysilicon tends to exhibit higher hydrogen impurity content compared to rod silicon by the modified Siemens method, resulting in the occurrence of the “hydrogen jump” phenomenon during the producing of the Czochralski monocrystalline silicon. This phenomenon, in turn, imposes negative impacts on both equipment and products. Both production lines and researchers are constantly searching for suitable methods to remove hydrogen impurities from granular polysilicon to avoid the occurrence of “hydrogen jump” phenomenon, but there are currently few reports on such research. This paper analyzes the potential formation processes of hydrogen impurities in granular polysilicon. It also illustrates the impacts of hydrogen impurities in granular polysilicon on the Czochralski monocrystalline silicon, as well as the corresponding control measures for these impacts. Furthermore, it discusses the challenges and issues of removing hydrogen impurities from granular polysilicon. Finally, recommendations are made for future research directions on hydrogen impurities in granular polysilicon.

关键词

多晶硅 / 颗粒料 / 脱氢 / 直拉单晶 / “氢跳”现象

Key words

polysilicon / granular materials / dehydrogenation / Czochralski crystal growth / “hydrogen jump” phenomenon

引用本文

导出引用
李杰, 黄虎一雄, 章金兵. 颗粒硅中氢杂质对直拉单晶硅的影响及控制措施分析[J]. 太阳能学报. 2025, 46(7): 568-576 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0390
Li Jie, Huang Huyixiong, Zhang Jinbing. ANALYSIS OF EFFECTS OF HYDROGEN IMPURITIES IN GRANULAR POLYSILICON ON CZOCHRALSKI-GROWN MONOCRYSTALLINE SILICON AND CONTROL MEASURES[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 568-576 https://doi.org/10.19912/j.0254-0096.tynxb.2024-0390
中图分类号: TQ127.2   

参考文献

[1] 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.
YAO Y B, ZHENG S Z, YANG Y, et al.Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta energiae solaris sinica, 2022, 43(10): 524-535.
[2] BARTIE N J, COBOS-BECERRA Y L, FRÖHLING M, et al. The resources, exergetic and environmental footprint of the silicon photovoltaic circular economy: Assessment and opportunities[J]. Resources, conservation and recycling, 2021, 169: 105516.
[3] 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报, 2021, 42(10): 49-60.
ZHANG Y L, CHEN X L, ZHOU Z X, et al.Research progress of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2021, 42(10): 49-60.
[4] BALLIF C, HAUG F J, BOCCARD M, et al.Status and perspectives of crystalline silicon photovoltaics in research and industry[J]. Nature reviews materials, 2022, 7(8): 597-616.
[5] GB/T 35307—2023, 流化床法颗粒硅[S].
GB/T 35307—2023, Granular polysilicon produced by fluidized bed method[S].
[6] 李亚广, 聂陟枫, 周扬民, 等. 改良西门子法制备多晶硅还原过程研究进展[J]. 现代化工, 2018, 38(5): 38-42.
LI Y G, NIE Z F, ZHOU Y M, et al.Research progress in reduction process of polysilicon production by modified Siemens method[J]. Modern chemical industry, 2018, 38(5): 38-42.
[7] CHEN H, JIE Y, YAN H, et al.Numerical simulation and validation of reaction mechanism for the Siemens process in silicon production[J]. Journal of crystal growth, 2023, 618: 127314.
[8] 马文军. 硅烷流化床法生产粒状多晶硅[J]. 化工管理, 2021(30): 167-168.
MA W J.Progress on preparation of granular polysilicon by fluidized-bed silane pyrolysis[J]. Chemical enterprise management, 2021(30): 167-168.
[9] 杨伟强, 王宁, 李良. 流化床法制备颗粒多晶硅的研究现状[J]. 中国氯碱, 2023(3): 32-37.
YANG W Q, WANG N, LI L.Research status of preparation of granular polysilicon by fluidized bed method[J]. China chlor-alkali, 2023(3): 32-37.
[10] ZHANG P, DUAN J H, CHEN G H, et al.Production of polycrystalline silicon from silane pyrolysis: a review of fines formation[J]. Solar energy, 2018, 175: 44-53.
[11] LI P L, WANG T F.Thermodynamic analysis of manufacturing polysilicon from SiHCl3, SiCl4 and H2[J]. Chinese journal of chemical engineering, 2015, 23(4): 681-688.
[12] SEIGNEUR H, MOHAJERI N, BROOKER R P, et al.Manufacturing metrology for c-Si photovoltaic module reliability and durability, Part I: Feedstock, crystallization and wafering[J]. Renewable and sustainable energy reviews, 2016, 59: 84-106.
[13] JIANG L, FIESELMANN B F, CHEN L, et al.Fluidized bed process with silane[M]. Berlin: Springer Berlin Heidelberg, 2019: 69-108.
[14] ZBIB M B, TARUN M C, NORTON M G, et al.Mechanical properties of polycrystalline silicon solar cell feed stock grown via fluidized bed reactors[J]. Journal of materials science, 2010, 45(6): 1560-1566.
[15] DAHL M M, BELLOU A, BAHR D F, et al.Microstructure and grain growth of polycrystalline silicon grown in fluidized bed reactors[J]. Journal of crystal growth, 2009, 311(6): 1496-1500.
[16] ZBIB M B, DAHL M M, SAHAYM U, et al.Characterization of granular silicon, powders, and agglomerates from a fluidized bed reactor[J]. Journal of materials science, 2012, 47(6): 2583-2590.
[17] GU G K, LV G Q, MA W H, et al.Numerical simulation of granular silicon growth and silicon fines formation process in polysilicon fluidized bed[J]. Particuology, 2024, 87: 74-86.
[18] DU S H, LIU L J.Numerical simulation of particle growth process in a polysilicon fluidized bed reactor[J]. Particulate science and technology, 2020, 38(3): 261-270.
[19] PENG X Y, KRÜGER P, POLLMANN J. Adsorption processes of hydrogen molecules on SiC(001), Si(001) and C(001) surfaces[J]. New journal of physics, 2008, 10(12): 125028.
[20] DÜRR M, RASCHKE M B, PEHLKE E, et al. Structure sensitive reaction channels of molecular hydrogen on silicon surfaces[J]. Physical review letters, 2001, 86(1): 123-126.
[21] DÜRR M, HÖFER U. Hydrogen diffusion on silicon surfaces[J]. Progress in surface science, 2013, 88(1): 61-101.
[22] 毛智慧, 周文韬, 田琦, 等. 晶体硅材料中杂质元素分析方法研究进展[J]. 化学分析计量, 2015, 24(2): 102-105.
MAO Z H, ZHOU W T, TIAN Q, et al.Methods for determination of impurity elements in crystalline silicon[J]. Chemical analysis and meterage, 2015, 24(2): 102-105.
[23] 刘洁, 钱荣, 卓尚军, 等. 高纯硅中痕量元素分析方法研究进展[J]. 理化检验-化学分册, 2013, 49(1): 121-127.
LIU J, QIAN R, ZHUO S J, et al.Progress of researches of methods for determination of trace elements in high-purity silicon[J]. Physical testing and chemical analysis (part B: chemical analysis), 2013, 49(1): 121-127.
[24] 明亮, 周浪, 黄美玲, 等. 多晶硅锭中硬质点分析及控制研究[J]. 太阳能学报, 2021, 42(1): 30-35.
MING L, ZHOU L, HUANG M L, et al.Analysis and control of hard spots in multicrystalline silicon ingots[J]. Acta energiae solaris sinica, 2021, 42(1): 30-35.
[25] 刘振东, 李志涛, 高倩倩, 等. 极性相反杂质在硅锭中的抵偿效应研究[J]. 太阳能学报, 2023, 44(4): 414-419.
LIU Z D, LI Z T, GAO Q Q, et al.Compensation effect research of opposite polarity impurity in silicon ingot[J]. Acta energiae solaris sinica, 2023, 44(4): 414-419.
[26] RIETIG A, ACKER J.Development and validation of a new method for the precise and accurate determination of trace elements in silicon by ICP-OES in high silicon matrices[J]. Journal of analytical atomic spectrometry, 2017, 32(2): 322-333.
[27] ZHANG J Y, ZHOU T, TANG Y C, et al.Rapid and quantitative analysis of impurities in silicon powders by glow discharge mass spectrometry[J]. Analytical and bioanalytical chemistry, 2018, 410(27): 7195-7201.
[28] MICHALISZYN L, REN T X, RÖTHKE A, et al. A new method for the SI-traceable quantification of element contents in solid samples using LA-ICP-MS[J]. Journal of analytical atomic spectrometry, 2020, 35(1): 126-135.
[29] CHEN Y S, LIU P Y, NIU R M, et al.Atom probe tomography for the observation of hydrogen in materials: a review[J]. Microscopy and microanalysis, 2023, 29(1): 1-15.
[30] GB/T 40566—2021, 流化床法颗粒硅氢含量的测定脉冲加热惰性气体熔融红外吸收法[S].
GB/T 40566—2021, Granular polysilicon produced by fluidized bed method—determination of hydrogen—Pulse heating inert gas fusion infrared absorption method[S].
[31] 周声浪. 颗粒硅在直拉单晶中的应用分析[C]//第十八届中国太阳级硅及光伏发电研讨会. 太原, 中国, 2022.
ZHOU S L.Application analysis of granular silicon in direct-draw single crystal[C]//18th China Solar Grade Silicon and Photovoltaic Power Generation Symposium. Taiyuan, China, 2022.
[32] 周声浪, 王新, 周洁, 等. 加料筒: CN115928193A[P].2023-04-07.
ZHOU S L, WANG X, ZHOU J, et al. Charging cylinder: CN115928193A[P].2023-04-07.
[33] 周声浪. 颗粒硅在N型单晶中的应用分析[C]//第十九届中国太阳级硅及光伏发电研讨会. 西安, 中国, 2023.
ZHOU S L.Application analysis of granular silicon in N-type single crystal[C]//19th China Solar Grade Silicon and Photovoltaic Power Generation Symposium. Xi’an, China, 2023.
[34] 吴知梁. 颗粒多晶硅痕量氢杂质真空去除机理与方法[D]. 昆明: 昆明理工大学, 2022.
WU Z L.Mechanism and method of vacuum removal of trace hydrogen impurities in granular polysilicon[D]. Kunming: Kunming University of Science and Technology, 2022.

基金

宁波市自然科学基金重点项目(2022J148); 宁波市甬江人才工程创新人才项目(2022A-095-G)

PDF(3055 KB)

Accesses

Citation

Detail

段落导航
相关文章

/